We are pleased to announce that registration for the Winter School in Abstract Analysis, section Set Theory and Topology is now open. The conference will take place between Jan 30th and Feb 6th 2016 in Hejnice, Czech Republic.

Tutorial speakers for this year are:

Martin Goldstern
Thomas Jech
Yiannis N. Moschovakis
Lyubomyr Zdomskyy

The conference fee is 300 EUR and covers all expenses including the bus from Prague to Hejnice and back. Accommodation will be in double rooms.

We have a limited amount of money to support students and researchers with limited sources of funding.

Important deadlines are:

Dec 9th, 2015 fee waiver application deadline Dec 31st, 2015 registration deadline

To get more information about the conference, about the fee waiver program and to register please visit our web page

The Perspectives on Infinity (P.O.I.) workshop in Pure and Descriptive Set Theory will take place as announced on september 25th and 26th in Turin. An updated program is available on the webpage of the workshop:

We can provide accomodation to students attending the workshop. The students interested can send an email to raphael dot carroy at unito dot it before the end of the week.

See you soon in Turin!

Alessandro Andretta, Raphaël Carroy, Luca Motto Ros, and Matteo Viale

The Role of the Higher Infinite in Mathematics and Other Disciplines
Isaac Newton Institute for Mathematical Sciences
Cambridge, England
14 to 18 December 2015 https://www.newton.ac.uk/event/hifw03/

Deadline for registration: 27 September 2015

Traditional set theory has been rather inwards-looking for many decades, dealing with the difficult and rewarding technical problems that the field provided. This has changed in the last decade, and set theorists have been eager to see the connections between their work and what is done in other fields of mathematics as well as outside of mathematics. Examples are the study of infinite games in the social sciences and theoretical computer science, the use of strong logics in data base theory, and the use of ideas from infinite combinatorial set theory in the design and analysis of efficient computer algorithms.

The workshop is the closing workshop of the research programme “Mathematical, Foundational and Computational Aspects of the Higher Infinite” at the Isaac Newton Institute and is open to all interested researchers. It will highlight this network of applications of the higher infinite in mathematics and beyond.

As part of this meeting, we are also celebrating the 50th birthday of one of the three programme organisers, Mirna Dzamonja. During one afternoon of the workshop (organised together with Jouko Väänänen), we shall have a number of talks concerned with her work.

Invited speakers: Dana Bartosova (Sao Paulo), Nathan Bowler (Hamburg), Andrew Brooke-Taylor (Bristol), Catrin Campbell-Moore (Cambridge), Merlin Carl (Konstanz), Johannes Carmesin (Cambridge), Olivier Finkel (Paris), Martin Hyland (Cambridge), Imre Leader (Cambridge), Jordi Lopez-Abad (Madrid), Bob Lubarsky (Boca Raton FL), Andrew Marks (Pasadena CA), Benjamin Miller (Vienna), Michael Rathjen (Leeds), Jiri Rosicky (Brno), Philippe Schnoebelen (Cachan).

Dzamonja afternoon speakers: István Juhasz (Budapest), Jean Larson (Gainesville FL), Menachem Magidor (Jerusalem).

If you are interested in participation, please register via the webpage https://www.newton.ac.uk/event/hifw03/ (click on “Apply now”). During the registration process, you can also

(1) indicate whether you’d like to give short presentation;

(2) apply for funding (we expect to be able to grant approximately ten participants covering the ‘accommodation package’, i.e., registration fee and accommodation at Robinson College).

INI Workshop: Independence Results in Mathematics and Challenges in Iterated Forcing (University of East Anglia, Norwich, UK), November 2–6, 2015

This is a satellite meeting of the Isaac Newton Institute scientific programme Mathematical, Foundational and Computational Aspects of the Higher Infinite (https://www.newton.ac.uk/event/hif).

Workshop theme: Independence Results in Mathematics and Challenges in Iterated Forcing

Forcing, and especially iterated forcing, is an extremely fruitful technique for proving that certain statements in mathematics are independent from ZFC, or some other base set theory. In recent years, several different lines of research in the area of iterated forcing have given rise to new methods and striking new results. Among those are recent iteration techniques that produce models with the continuum of large cardinality, iterations of proper forcing with side conditions of uncountable cardinality, Jensen’s subcomplete forcing iterations, etc.

The invited speakers include: A. Apter, O. Ben Neria, P. Borodulin-Nadzieja, T. Eisworth, M. Kojman, M. Magidor, D. Mejia, H. Mildenberger, J.T. Moore, I. Neeman, G. Plebanek, D. Soukup, S. Unger, B. Velickovic, M. Viale, L. Wu, T. Yorioka.

The organizers are D. Aspero, J. Bagaria, M. Dzamonja and B. Loewe.

The second Hausdorff medal was awarded by the European Set Theory Society on August 26, 2015, at the fifth European Set Theory Conference, held at the Isaac Newton Institute in Cambridge, to Ronald Jensen (Humboldt University, Berlin) and John Steel (UC Berkeley) for their work K without the measurable.

Statement read by the president of the European Set Theory Society, Istvan Juhasz, at the award ceremony:

Ladies and gentlemen, dear friends and colleagues!

It is my pleasure and privilege, as president of the European Set Theory Society, to announce the winner of the Hausdorff medal. This is awarded by the Board of Trustees of the European Set Theory Society at the biennial European Set Theory Conference for the most influential published work in set theory in the last five years.

Nominations for the Hausdorff medal 2015 were solicited from the members of the Society last fall. Five very worthy nominations were deliberated by the prize committee which consisted of the Board of Trustees augmented with the winner of the previous medal, Hugh Woodin.

After long and serious discussion the unanimous decision was reached that the second Hausdorff medal is awarded to the paper

K without the measurable, The Journal of Symbolic Logic, Volume 78, Issue 3 (2013), 708-734

by Ronald Jensen and John Steel.

Before handing over the medals and the diplomas that go with them to the winners, please allow me to briefly review the winning work.

The construction of core models originates in the seminal work of Dodd and Jensen of just about 40 years ago. Since that time the constructions have been vastly developed and the machinery in its various incarnations is the main tool for showing the necessity of large cardinals for independence proofs. Even more striking is the use of core model methods to prove outright implications of, for example, of determinacy.

Despite all this progress, an absolutely fundamental question remained unresolved. What is the strongest core model which can be constructed just in ZFC? More precisely, suppose there is no inner model with a Woodin cardinal; does then K exist? Jensen and Steel solved this problem in the paper K without the measurable.

The Jensen-Steel construction of K is best possible (having been done just within ZFC) and is therefore a seminal milestone in the entire subject of core models and inner model theory. It marks in some sense the conclusion of a line of investigation which began with Jensen’s Covering Lemma.

It already has many applications, for example as a corollary of their construction, one obtains the equiconsistency of ‘ZFC + There is a saturated ideal on \omega_1’ with ‘ZFC + There is a Woodin cardinal’.