On minimal cofinalities

Heike Mildenberger and Saharon Shelah

Universität Freiburg, Mathematisches Institut, Abteilung für Logik http://home.mathematik.uni-freiburg.de/mildenberger

Eleventh International Workshop in Set Theory, Luminy October 4, 2010

Outline

Introduction
Definitions of the characteristics
Relations to other cardinals

Outline

Introduction
Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$
A preparatory forcing
A forcing vaguely resembling Hechler forcing

Outline

Introduction
Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$
A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$
À la MacPherson and von Neumann
How to avoid short sequences of witnesses

Outline

Introduction
Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$
A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$
À la MacPherson and von Neumann
How to avoid short sequences of witnesses

The shortest ultrapower

Definition

By ultrapower we mean the usual modeltheoretic ultrapower: $(\omega,<)^{\omega} / \mathscr{U}$ is the structure with domain $\left\{[f]_{\mathscr{U}} \mid f \in \omega^{\omega}\right\}$ where $[f]_{\mathscr{U}}=\left\{g \in \omega^{\omega} \mid\{n \mid f(n)=g(n)\} \in \mathscr{U}\right\}$ and $[f]_{\mathscr{U}} \leq \mathscr{U}[g]_{\mathscr{U}}$ iff $\{n \mid f(n) \leq g(n)\} \in \mathscr{U}$. The minimal cofinality of an ultrapower of $\omega, \mathfrak{m c f}$, is defined as the

$$
\left.\mathfrak{m c f}=\min \left\{\operatorname{cf}\left((\omega,<)^{\omega}\right) / \mathscr{U}\right) \mid \mathscr{U} \text { non-principal ultrafilter on } \omega\right\} .
$$

The cofinality of the symmetric group

Definition

$\operatorname{Sym}(\omega)$ is the group of all permutations of ω. If
$\operatorname{Sym}(\omega)=\bigcup_{i<\kappa} G_{i}$ and $\left\langle G_{i} \mid i<\kappa\right\rangle$ is strictly increasing and each G_{i} is a proper subgroup of $\operatorname{Sym}(\omega)$ we call $\left\langle G_{i} \mid i<\kappa\right\rangle$ a decomposition. We call the minimal such κ the cofinality of the symmetric group, short $\operatorname{cf}(\operatorname{Sym}(\omega))$.

Outline

Introduction
Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$

A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$
À la MacPherson and von Neumann
How to avoid short sequences of witnesses

Groupwise dense families and ideals

A $\mathscr{G} \subseteq[\omega]^{\omega}$ is called a groupwise dense family if

- \mathscr{G} is closed under almost subsets
- and for every strictly increasing sequence $\pi_{i}, i \in \omega$ there is $A \in[\omega]^{\omega}$ such that $\bigcup_{i \in A}\left[\pi_{i}, \pi_{i+1}\right) \in \mathscr{G}$.

Groupwise dense families and ideals

A $\mathscr{G} \subseteq[\omega]^{\omega}$ is called a groupwise dense family if

- \mathscr{G} is closed under almost subsets
- and for every strictly increasing sequence $\pi_{i}, i \in \omega$ there is $A \in[\omega]^{\omega}$ such that $\bigcup_{i \in A}\left[\pi_{i}, \pi_{i+1}\right) \in \mathscr{G}$.
A groupwise dense ideal is a groupwise dense family that is additionally closed under finite unions.

Groupwise dense families and ideals

A $\mathscr{G} \subseteq[\omega]^{\omega}$ is called a groupwise dense family if

- \mathscr{G} is closed under almost subsets
- and for every strictly increasing sequence $\pi_{i}, i \in \omega$ there is $A \in[\omega]^{\omega}$ such that $\bigcup_{i \in A}\left[\pi_{i}, \pi_{i+1}\right) \in \mathscr{G}$.
A groupwise dense ideal is a groupwise dense family that is additionally closed under finite unions.
The groupwise density number, \mathfrak{g}, (groupwise density number for filters, \mathfrak{g}_{f}) is the minimal size of a collection of groupwise dense sets (ideals) whose intersection is empty.

Inequalities in ZFC

Observation $\mathfrak{m c f} \geq \mathfrak{g}_{f}$.

Inequalities in ZFC

Observation
$\mathfrak{m c f} \geq \mathfrak{g}_{f}$.
Proof: Let $X \subseteq \omega$ be infinite. The next function of X is: $\nu_{X}(n)=\min (X \cap[n, \infty))$.
For $h: \omega \rightarrow \omega$ let

$$
\mathscr{G}_{h}=\left\{X \subseteq \omega \mid h \leq \mathscr{U} \nu_{X}\right\} .
$$

\mathscr{G}_{h} is a groupwise ideal.

Inequalities in ZFC

Observation
$\mathfrak{m c f} \geq \mathfrak{g}_{f}$.
Proof: Let $X \subseteq \omega$ be infinite. The next function of X is: $\nu_{X}(n)=\min (X \cap[n, \infty))$.
For $h: \omega \rightarrow \omega$ let

$$
\mathscr{G}_{h}=\left\{X \subseteq \omega \mid h \leq \mathscr{U} \nu_{X}\right\} .
$$

\mathscr{G}_{h} is a groupwise ideal.
Theorem, Brendle and Losada, 2003
$\operatorname{cf}(\operatorname{Sym}(\omega)) \geq \mathfrak{g}$.

Inequalities in ZFC

Observation
$\mathfrak{m c f} \geq \mathfrak{g}_{f}$.
Proof: Let $X \subseteq \omega$ be infinite. The next function of X is:
$\nu_{X}(n)=\min (X \cap[n, \infty))$.
For $h: \omega \rightarrow \omega$ let

$$
\mathscr{G}_{h}=\left\{X \subseteq \omega \mid h \leq \mathscr{U} \nu_{X}\right\} .
$$

\mathscr{G}_{h} is a groupwise ideal.
Theorem, Brendle and Losada, 2003
$\operatorname{cf}(\operatorname{Sym}(\omega)) \geq \mathfrak{g}$.
Theorem, Shelah 2007
$\mathfrak{g}_{f} \leq \mathfrak{b}^{+}$in ZFC.

A result about $\operatorname{cf}(\operatorname{Sym}(\omega))$ and $\mathfrak{m c f}$

Theorem, Banakh, Repovš, Zdomskyy
If there is no Q-point, then $\operatorname{cf}(\operatorname{Sym}(\omega)) \leq \mathfrak{m c f}$.

Our First Consistency Result

Theorem
Suppose that $\aleph_{1} \leq \partial=\operatorname{cf}(\partial) \leq \theta=\operatorname{cf}(\theta)<\kappa=\operatorname{cf}(\kappa)<\lambda$ and GCH holds up to λ. Then there is a notion of forcing \mathbb{P} of size λ that preserves cardinalities and cofinalities and that forces $\mathrm{MA}_{<\partial}$ and $\mathfrak{b}=\theta$ and $\mathfrak{m c f} \geq \kappa$ and $\mathfrak{c}=\lambda$.

A Stronger Forcing Construction

Theorem
Suppose that $\aleph_{1} \leq \partial=\operatorname{cf}(\partial) \leq \theta=\operatorname{cf}(\theta)<\kappa=\operatorname{cf}(\kappa)<\lambda$ and GCH holds up to λ. Then there is a notion of forcing \mathbb{P} of size λ that preserves cardinalities and cofinalities and that forces $\mathrm{MA}_{<\partial}$ and $\mathfrak{b}=\theta$ and $\mathfrak{m c f} \geq \kappa$ and $\operatorname{cf}(\operatorname{Sym}(\omega)) \geq \kappa$ and $\mathfrak{c}=\lambda$.

Outline

Introduction

Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$
A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$
À la MacPherson and von Neumann
How to avoid short sequences of witnesses

Almost Disjointness and a Square with Built-in Club

 GuessingHypothesis
GCH holds up to λ,
$\aleph_{1} \leq \partial=\operatorname{cf}(\partial) \leq \theta=\operatorname{cf}(\theta)<\kappa=\operatorname{cf}(\kappa)<\lambda, \mu^{+}=\lambda$.
Lemma
By a preliminary forcing of size λ that preserves cofinalities and cardinalities starting from the hypothesis we get a forcing extension with the following situation:
(a) $\partial=\operatorname{cf}(\partial)<\kappa=\operatorname{cf}(\kappa) \leq \mu<\lambda=\lambda^{<\lambda}, \mu^{+}=\lambda, \mu^{\aleph_{0}}<\lambda$.
(b) \mathscr{A}_{ℓ} is a family of subsets of $[\mu]^{<\kappa}$, $\left(\forall A \in \mathscr{A}_{0}\right)\left(\forall B \in \mathscr{A}_{1}\right)(A \cap B$ is finite $)$.

The Continuation of the Lemma

(c) if $\kappa_{1}<\kappa$ and $\left(u_{0}, u_{1}\right)$ is a partition of μ then there is $\ell \in 2$ and there a are λ sets $A \in \mathscr{A}_{\ell}$ such that $A \subseteq u_{\ell}$ and $|A| \geq \kappa_{1}$.
(d) there is a square sequence $\bar{C}=\left\langle C_{\alpha}\right| \alpha \in \lambda, \alpha$ limit \rangle in $\lambda=\mu^{+}$that is club guessing, i.e., \bar{C} has the following properties
(1) $C_{\alpha} \subseteq \alpha$ is cofinal in α and closed in α, i.e., $\operatorname{acc}\left(C_{\alpha}\right) \subseteq C \cup\{\alpha\}, \operatorname{otp}\left(C_{\alpha}\right) \leq \mu$,
(2) for $\beta \in \operatorname{acc}\left(C_{\alpha}\right), C_{\beta}=C_{\alpha} \cap \beta$,
(3) for every club E in λ there are stationarily many $\alpha \in \lambda$ with $\operatorname{cf}(\alpha)=\mu$ and $C_{\alpha} \subseteq E$. We call this " \bar{C} is club guessing".
(e) There is an \leq^{*}-unbounded sequence $\left\langle g_{\alpha} \mid \alpha<\theta\right\rangle$ in ω^{ω}.

Outline

Introduction

Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$
A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$

À la MacPherson and von Neumann
How to avoid short sequences of witnesses

Redefining the Ground Model

Now we assume that we have families $\mathscr{A}_{0}, \mathscr{A}_{1}$ and a square sequence with built in club guessing \bar{C} and an unbounded sequence $\left\langle g_{\alpha} \mid \alpha<\theta\right\rangle$ as described in Lemma in the ground model.

Redefining the Ground Model

Now we assume that we have families $\mathscr{A}_{0}, \mathscr{A}_{1}$ and a square sequence with built in club guessing \bar{C} and an unbounded sequence $\left\langle g_{\alpha} \mid \alpha<\theta\right\rangle$ as described in Lemma in the ground model.
The final two forcing orders look like this:
The first step is a forcing $\mathbb{K}=\left(\mathbf{K}, \leq_{\mathbb{K}}\right)$ of approximations $\mathbf{q} \in \mathbf{K}$, where $\mathbf{K}=\bigcup\left\{\mathbf{K}_{\alpha} \mid \alpha<\lambda\right\}$ and \mathbf{K}_{α} is the set of α-approximations. The relation $\leq_{\mathbb{K}}$ denotes prolonging the forcing iteration and taking an end extension of the partition of the iteration length and of \bar{A}. Once we have a generic $\mathbf{G}_{\mathbb{K}}$ for this forcing by approximations and end extension, we force with the direct limit

$$
\mathbb{P}_{\mathbf{G}_{\mathbb{K}}}=\bigcup\left\{\mathbb{P}^{\mathbf{q}} \mid \mathbf{q} \in{\underset{\sim}{\mathbb{K}}}^{\mathbb{K}}\right\}
$$

An Iteration that Works on Special Parts of the Past

Let $\alpha<\lambda$.

Definition

Assume that $\mathscr{A}_{\ell}, \ell=0,1, \lambda, \mu, \kappa, \partial, \bar{g}$ and \bar{C} have the properties listed above. A finite support iteration together with three disjoint domains and the sequence \bar{A} of subsets of μ,
$\mathbf{q}=\left(\mathbb{P}^{\mathbf{q}}, \mathscr{U}_{0}^{\mathbf{q}}, \mathscr{U}_{1}^{\mathbf{q}}, \mathscr{U}_{2}^{\mathbf{q}}, \bar{A}\right)$, is an element of the set \mathbf{K}_{α} of α-approximations iff it has the following properties:
(a) $\mathbb{P}^{\mathbf{q}}=\mathbb{P}_{\alpha}^{\mathbf{q}}$, where $\overline{\mathbb{Q}}^{\mathbf{q}}=\left\langle\mathbb{P}_{\gamma}^{\mathbf{q}}, \mathbb{Q}_{\beta}^{\mathbf{q}} \mid \beta<\alpha(\mathbf{q}), \gamma \leq \alpha(\mathbf{q})\right\rangle$ is a finite support iteration of c.c.c. forcings of length

$$
\alpha(\mathbf{q})=\lg (\mathbf{q})<\lambda .
$$

Continuation I

(b) $\mathscr{U}_{0}=\mathscr{U}_{0}^{\mathbf{q}}$ are the odd ordinals in α and $\mathscr{U}_{1}, \mathscr{U}_{2}$ is a partition of the even ordinals in α, \mathscr{U}_{2} contains only limit ordinals, and $\bar{A}=\left\langle A_{\beta} \mid \beta \in \alpha \cap \mathscr{U}_{2}\right\rangle$.
(c) For $\beta \in \mathscr{U}_{0}, \mathbb{Q}_{\beta}$ is the Cohen forcing $\left({ }^{\omega>} 2, \triangleleft\right)$ and we call the generic real ϱ_{β}.
(d) For $\beta \in \mathscr{U}_{1}, \mathbb{Q}_{\beta}$ is a c.c.c. forcing of size $\partial_{\beta}<\partial$.

Continuation II

(e) For $\beta \in \mathscr{U}_{2}$, we first fix a cardinal $\kappa_{\beta}<\kappa$. Then we have a sequence $\left\langle\xi_{\beta, i} \mid i<\kappa_{\beta}\right\rangle=: \bar{\xi}_{\beta}$ of $\xi_{\beta, i}=\xi(\beta, i) \in \mathscr{U}_{0} \cap \beta$, increasing with i, of Cohen reals relevant for time β, and we have $t_{\beta} \in 2$ such that $\left\{\xi_{\beta, i} \mid i<\kappa_{\beta}\right\} \subseteq\left\{\varepsilon+1 \mid \varepsilon \in \operatorname{acc}\left(C_{\beta}\right)\right\}$ and

$$
\begin{aligned}
& \left(A_{\beta} \in \mathscr{A}_{t_{\beta}} \wedge A_{\beta} \notin\left\{A_{\gamma} \mid \gamma \in \beta \cap \mathscr{U}_{2}\right\}\right. \\
& \wedge A_{\beta} \supseteq\left\{\operatorname{otp}\left(\varepsilon \cap \operatorname{acc}\left(C_{\beta}\right)\right) \mid\left(\varepsilon \in \operatorname{acc}\left(C_{\beta}\right)\right.\right. \\
& \left.\left.\left.\wedge \varepsilon+1 \in\left\{\xi_{\beta, i} \mid i<\kappa_{\beta}\right\}\right)\right\}\right) .
\end{aligned}
$$

Continuation III

(f) For $\beta \in \mathscr{U}_{2}$ we define $\mathbb{P}_{\beta+1}$ as follows: First we have

$$
\text { (*1) a sequence } \bar{\eta}_{\beta}=\left\langle{\underset{\sim}{\eta}, i} \mid i<\kappa_{\beta}\right\rangle \text {, such that }{\underset{\eta}{\beta, i}} \text { is a } \mathbb{P}_{\xi_{\beta, i}} \text {-name for an element of } \omega^{\omega} \text {. }
$$

$$
\left(*_{2}\right) \quad \bar{p}_{\beta}=\left\langle p_{\beta, i} \mid i<\kappa_{\beta}\right\rangle, p_{\beta, i} \in \mathbb{P}_{\xi(\beta, i+1)}^{\prime}, \xi(\beta, i) \in \operatorname{dom}\left(p_{\beta, i}\right) .
$$

We let $p \in \mathbb{P}_{\beta+1}$ iff $p: \beta+1 \rightarrow \mathbf{V}, p \upharpoonright \beta \in \mathbb{P}_{\beta}$ and

$$
\left.\left.\begin{array}{rl}
p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} & p(\beta)=(n, f, u) \\
& \wedge n \in \omega \\
& \wedge f: n \rightarrow \omega \\
& \wedge u \subseteq \kappa_{\beta} \text { is finite } \\
& \wedge(\forall i \in u)\left(p_{\beta, i} \in \mathbf{G}(\underset{\sim}{\mathbb{P}}\right. \\
\beta
\end{array}\right)\right)
$$

$p \leq_{\mathbb{P}_{\beta+1}} q$ iff

$$
\begin{aligned}
q \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} & n_{p(\beta)} \leq n_{q(\beta)} \\
& \wedge f_{p(\beta)} \subseteq f_{q(\beta)} \\
& \wedge\left(\forall n \in\left[n_{p(\beta)}, n_{q(\beta)}\right)\right)\left(\forall i \in u_{p(\beta)}\right) \\
& \left(\varrho_{\xi_{\beta, i}}(n)=t_{\beta} \rightarrow \underline{\eta}_{\beta, i}(n)<f_{q(\beta)}(n)\right)
\end{aligned}
$$

Continuation III

(f) For $\beta \in \mathscr{U}_{2}$ we define $\mathbb{P}_{\beta+1}$ as follows: First we have $\left(*_{1}\right)$ a sequence $\bar{\eta}_{\beta}=\left\langle\eta_{\beta, i} \mid i<\kappa_{\beta}\right\rangle$, such that $\eta_{\beta, i}$ is a $\mathbb{P}_{\xi_{\beta, i}}$ - name for an element of ω^{ω}.

$$
\left(*_{2}\right) \quad \bar{p}_{\beta}=\left\langle p_{\beta, i} \mid i<\kappa_{\beta}\right\rangle, p_{\beta, i} \in \mathbb{P}_{\xi(\beta, i+1)}^{\prime}, \xi(\beta, i) \in \operatorname{dom}\left(p_{\beta, i}\right) .
$$

We let $p \in \mathbb{P}_{\beta+1}$ iff $p: \beta+1 \rightarrow \mathbf{V}, p \upharpoonright \beta \in \mathbb{P}_{\beta}$ and

$$
\left.\left.\begin{array}{rl}
p \upharpoonright \beta \Vdash_{\mathbb{P}_{\beta}} & p(\beta)=(n, f, u) \\
& \wedge n \in \omega \\
& \wedge f: n \rightarrow \omega \\
& \wedge u \subseteq \kappa_{\beta} \text { is finite } \\
& \wedge(\forall i \in u)\left(p_{\beta, i} \in \mathbf{G}(\underset{\sim}{\mathbb{P}}\right. \\
\beta
\end{array}\right)\right)
$$

The second part of the slide which was formerly in tiny font

$$
p \leq_{\mathbb{P}_{\beta+1}} q \text { iff }
$$

$$
\begin{aligned}
q \upharpoonright \beta \vdash_{\mathbb{P}_{\beta}} & n_{p(\beta)} \leq n_{q(\beta)} \\
& \wedge f_{p(\beta)} \subseteq f_{q(\beta)} \\
& \wedge\left(\forall n \in\left[n_{p(\beta)}, n_{q(\beta)}\right)\right)\left(\forall i \in u_{p(\beta)}\right) \\
& \left(\varrho_{\xi_{\beta, i}}(n)=t_{\beta} \rightarrow \underset{\sim}{\eta} \eta_{\beta, i}(n)<f_{q(\beta)}(n)\right)
\end{aligned}
$$

End of the list: Working towards compatibility

(g) For $\beta \leq \alpha$ we define $\mathbb{P}_{\beta}^{\prime}$ to be the set of the $p \in \mathbb{P}_{\beta}$ with the following properties: If $\gamma \in \operatorname{dom}(p)$, then $p(\gamma) \in \mathbf{V}$ (is not just a name) and if $\gamma \in \operatorname{dom}(p) \cap \mathscr{U}_{2}$ then

$$
\begin{aligned}
p \upharpoonright \gamma \Vdash & \in u_{p(\gamma)} \rightarrow\left(p_{\gamma, i} \leq \mathbb{P}_{\gamma} p \upharpoonright \gamma\right. \\
& \wedge \xi_{\gamma, i} \in \operatorname{dom}(p) \\
& \wedge p \upharpoonright \xi_{\gamma, i} \text { forces a value to } \underset{\sim}{\eta_{\gamma, i} \upharpoonright \lg }\left(p\left(\xi_{\gamma, i}\right)\right), \\
& \left.\wedge n_{p(\gamma)} \leq \lg \left(p\left(\xi_{\gamma, i}\right)\right)\right) .
\end{aligned}
$$

Prolonging Approximation Orders

Definition
We let $\mathbf{K}=\bigcup\left\{\mathbf{K}_{\alpha} \mid \alpha<\lambda\right\}$ be the set of approximations. For $\mathbf{q}=\left(\mathbb{P}_{\alpha}, \mathscr{U}_{0}, \mathscr{U}_{1}, \mathscr{U}_{2}, \bar{A}\right) \in \mathbf{K}_{\alpha}$ and $\beta<\alpha$ we let $\mathbf{q} \upharpoonright \beta=\left(\mathbb{P}_{\beta}, \mathscr{U}_{0} \cap \beta, \mathscr{U}_{1} \cap \beta, \mathscr{U}_{2} \cap \beta, \bar{A} \upharpoonright \beta\right)$. We let the forcing with approximations be $\mathbb{K}=\left(\mathbf{K}, \leq_{\mathbb{K}}\right)$ with the following forcing order: $\mathbf{q} \geq_{\mathbb{K}} \mathbf{q}_{0}$ iff $\mathbf{q} \upharpoonright \alpha\left(\mathbf{q}_{0}\right)=\mathbf{q}_{0}$.

Prolonging Approximation Orders

Definition
We let $\mathbf{K}=\bigcup\left\{\mathbf{K}_{\alpha} \mid \alpha<\lambda\right\}$ be the set of approximations. For $\mathbf{q}=\left(\mathbb{P}_{\alpha}, \mathscr{U}_{0}, \mathscr{U}_{1}, \mathscr{U}_{2}, \bar{A}\right) \in \mathbf{K}_{\alpha}$ and $\beta<\alpha$ we let $\mathbf{q} \upharpoonright \beta=\left(\mathbb{P}_{\beta}, \mathscr{U}_{0} \cap \beta, \mathscr{U}_{1} \cap \beta, \mathscr{U}_{2} \cap \beta, \bar{A} \upharpoonright \beta\right)$. We let the forcing with approximations be $\mathbb{K}=\left(\mathbb{K}, \leq_{\mathbb{K}}\right)$ with the following forcing order: $\mathbf{q} \geq_{\mathbb{K}} \mathbf{q}_{0}$ iff $\mathbf{q} \upharpoonright \alpha\left(\mathbf{q}_{0}\right)=\mathbf{q}_{0}$.

Lemma

(1) For $\alpha<\lambda$, each $\mathbf{q} \in \mathbf{K}_{\alpha}$ has the c.c.c.
(2) If $\alpha<\lambda$ and $\mathbf{q} \in \mathbf{K}_{\alpha}$ and $\beta<\alpha$ then $\mathbf{q} \upharpoonright \beta \in \mathbf{K}_{\beta}$.

First properties of the overall order

Lemma

(1) $\mathbb{K}=\left(\mathbf{K}, \leq_{\mathbb{K}}\right)$ is a $(<\lambda)$-closed partial order.
(2) $\vdash_{\mathbb{K}} \mathbb{P}_{\mathbf{G}_{\mathbb{K}}}$ satisfies the c.c.c.
(3) Forcing by $\mathbb{K} * \mathbb{P}_{\mathbf{G}_{\mathbb{K}}}$ does not collapse cofinalities nor cardinals and it forces $2^{\aleph_{0}}=\lambda=\lambda^{<\lambda}$ and the power μ^{κ} for $\mu \geq \lambda$ does not change.

First properties of the overall order

Lemma

(1) $\mathbb{K}=\left(\mathbb{K}, \leq_{\mathbb{K}}\right)$ is a $(<\lambda)$-closed partial order.
(2) $\Vdash_{\mathbb{K}} \mathbb{P}_{\mathbf{G}_{\mathbb{K}}}$ satisfies the c.c.c.
(3) Forcing by $\mathbb{K} * \mathbb{P}_{\mathbf{G}_{\mathbb{K}}}$ does not collapse cofinalities nor cardinals and it forces $2^{\aleph_{0}}=\lambda=\lambda^{<\lambda}$ and the power μ^{κ} for $\mu \geq \lambda$ does not change.

Lemma
In the generic extension by $\mathbb{P}=\mathbb{K} * \mathbb{P}_{\mathbf{G}_{\mathbb{K}}}, \mathrm{MA}_{<\partial}$ holds and $\mathfrak{m c f} \geq \kappa$.

Why Does \bar{g} Stay Unbounded?

Lemma
If $\mathbf{q} \in K_{\alpha}$ and $\beta \leq \alpha$ then $\mathbb{P}_{\beta}^{\prime}=\left(\mathbb{P}^{\prime}\right)_{\beta}^{\mathbf{q}}$ is a dense subset of $\mathbb{P}_{\beta}=\mathbb{P}_{\beta}^{\mathbf{q}}$.
Proof: Let for $\beta_{1}<\beta_{2} \leq \alpha, \mathbb{P}_{\beta_{1}, \beta_{2}}^{\prime}=\left\{p \in \mathbb{P}_{\beta_{2}} \mid\right.$ the demands from item (g) hold for $\gamma \in \operatorname{dom}(p) \backslash \beta_{1}$ for all $i \in u_{p(\gamma)} \backslash \beta_{1}$, and if $i \in u_{p(\gamma)} \cap \beta_{1}$ then we only demand $p_{\gamma, i} \leq p \upharpoonright \gamma$ and $\left.\xi_{\gamma, i} \in \operatorname{dom}(p)\right\}$

In Terms of Memory \bar{g} is too Rich to be Dominated by a New Real

Lemma
Let $\bar{g}=\left\langle g_{\varepsilon} \mid \varepsilon<\theta\right\rangle$ be a \leq^{*}-increasing sequence in \mathbf{V} that does not have an upper bound, $\partial \leq \theta<\kappa$. Then, for every $\alpha<\lambda$ and $\mathbf{q} \in \mathbf{K}_{\alpha}$, after forcing with $\mathbb{P}^{\mathbf{q}}$ the sequence \bar{g} is still unbounded.

Corollary
After forcing with \mathbb{P}, \bar{g} is unbounded.

Outline

Introduction

Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$

A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$
À la MacPherson and von Neumann

How to avoid short sequences of witnesses

Moities and Thirds

Definition
(1) For $h \in \operatorname{Sym}(\omega)$, let $\operatorname{supp}(h)=\{n \mid h(n) \neq n\}$.
(2) For $u \subseteq \omega$ let $H_{u}=\{f \in \operatorname{Sym}(\omega) \mid \operatorname{supp}(f) \subseteq u\}$.
(3) Let $w_{i}=\{k \in \omega \mid k \equiv i \bmod 3\}$.
(4) Let $u_{i}=\{k \in \omega \mid k \not \equiv i \bmod 3\}$.

Witnesses for Decompositions

Definition
(1) We say \bar{e} is a witness for the decomposition $\bar{G}=\left\langle G_{i} \mid i<\kappa\right\rangle$ iff $\bar{e}=\left\langle e_{i} \mid i<\kappa\right\rangle$ and $e_{i} \in G_{i+1} \backslash G_{i}$ and e_{i} is of order 2 and $e_{i} \in H_{w_{1}}$.
(2) \bar{e} is a witness iff there is a decomposition \bar{G} such that \bar{e} is a witness for \bar{G}.

Witnesses for Decompositions

Definition

(1) We say \bar{e} is a witness for the decomposition $\bar{G}=\left\langle G_{i} \mid i<\kappa\right\rangle$ iff $\bar{e}=\left\langle e_{i} \mid i<\kappa\right\rangle$ and $e_{i} \in G_{i+1} \backslash G_{i}$ and e_{i} is of order 2 and $e_{i} \in H_{w_{1}}$.
(2) \bar{e} is a witness iff there is a decomposition \bar{G} such that \bar{e} is a witness for \bar{G}.

Lemma
Every decomposition \bar{G} such that all recursive permutations are in G_{0} has a witness.

Outline

Introduction

Definitions of the characteristics
Relations to other cardinals

Forcing arbitrary spread between \mathfrak{b} and $\mathfrak{m c f}$

A preparatory forcing
A forcing vaguely resembling Hechler forcing

About $\operatorname{cf}(\operatorname{Sym}(\omega))$
À la MacPherson and von Neumann
How to avoid short sequences of witnesses

Conjugations by Conjugators of Order Two

Lemma

Suppose e, f are permutations of order 2 and $\operatorname{supp}(e) \subseteq w_{1}$ and $\operatorname{supp}(f) \subseteq w_{0}$ and both supports are infinite. Then there is g of order $2, \operatorname{supp}(g) \subseteq u_{2}$ such that

$$
e=g \circ f \circ g
$$

A Description of the Proof of Our Second Result in Words

A stronger preparation similar to the previous preparatory forcing is used. It is not harder, we just do not water down Baumgartner's almost disjoint families so much as we did before.

A Description of the Proof of Our Second Result in Words

A stronger preparation similar to the previous preparatory forcing is used. It is not harder, we just do not water down Baumgartner's almost disjoint families so much as we did before.

We partition the iteration length in 5 parts and use a similar forcing to the one from the previous theorem with two additional parts of the partition that are reserved for work on $\operatorname{cf}(\operatorname{Sym}(\omega))$.

A Description of the Proof of Our Second Result in Words

A stronger preparation similar to the previous preparatory forcing is used. It is not harder, we just do not water down Baumgartner's almost disjoint families so much as we did before.

We partition the iteration length in 5 parts and use a similar forcing to the one from the previous theorem with two additional parts of the partition that are reserved for work on $\operatorname{cf}(\operatorname{Sym}(\omega))$.

In the new kinds of iterands we add conjugators to get rid of short sequences of witnesses. This is similar to adding a dominator on a new ultrafilter set: We now add a new conjugator conjugating all members of a witness to one new function.

