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Introduction

Within the last few years, it has become clear that many descriptive
set-theoretic dichotomy theorems can be seen as consequences of a
small handful of graph-theoretic dichotomy theorems.

This has led to classical proofs of many theorems which previously
relied on sophisticated machinery from mathematical logic.

Here we give a detailed summary of the new arguments.
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Part I

The G0 dichotomy
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I. The G0 dichotomy
Graph-theoretic definitions

Definition

A digraph on X is an irreflexive set G ⊆ X × X .

The restriction of G to Y ⊆ X is given by G � Y = G ∩ (Y × Y ).
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I. The G0 dichotomy
Graph-theoretic definitions

Definition

Suppose that R ⊆
∏

i∈n Xi .

A sequence (Yi )i∈n is R-independent if R ∩
∏

i∈n Yi = ∅.

A set Y ⊆ X is G -independent if (Y ,Y ) is G -independent.
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I. The G0 dichotomy
Graph-theoretic definitions

Definition

An (I -)coloring of G is a function c : X → I with the property that
for all i ∈ I , the set c−1({i}) is G -independent.

A homomorphism from R ⊆ X × X to S ⊆ Y × Y is a function
ϕ : X → Y which sends R-related points to S-related points.

A homomorphism from (Ri )i∈I to (Si )i∈I is a function which is a
homomorphism from Ri to Si for all i ∈ I .

A reduction from R ⊆ X × X to S ⊆ Y × Y is a homomorphism
from (R,Rc) to (S ,Sc). An embedding is an injective reduction.
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I. The G0 dichotomy
Graph-theoretic definitions

Example

The digraph on 2ω associated with S ⊆ 2<ω is given by

GS = {(sa0ax , sa1ax) | s ∈ S and x ∈ 2ω}.

Definition

A set S ⊆ 2<ω is dense if ∀r ∈ 2<ω∃s ∈ S (r v s).
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I. The G0 dichotomy
Digraphs without large independent sets

Lemma 1

Suppose that B ⊆ 2ω is a non-meager set with the Baire property
and S ⊆ 2<ω is dense. Then B is not GS -independent.

Proof of Lemma 1

Fix r ∈ 2<ω such that B is comeager in Nr .

Fix s ∈ S such that r v s.

Then (sa0ax , sa1ax) ∈ GS � B for comeagerly many x ∈ 2ω.
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I. The G0 dichotomy
Digraphs without measurable colorings

Lemma 2

Suppose that κ is an aleph, S ⊆ 2<ω is dense, and c is a κ-coloring
of GS . Then (c × c)−1(≤) does not have the Baire property.

Proof of Lemma 2

Set R = (c × c)−1(≤) and E = (c × c)−1(∆(κ)).
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I. The G0 dichotomy
Digraphs without measurable colorings

Proof of Lemma 2 (continued)

If R has the Baire property, then Kuratowski-Ulam yields a least
α ∈ κ for which c−1(≤α) is non-meager and has the Baire property.

Then the E -class C = c−1({α}) is non-meager.

By Lemma 1, there exists (x , y) ∈ GS � C , a contradiction.
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I. The G0 dichotomy
Digraphs without measurable colorings

Lemma 3

Suppose that κ is an aleph, S ⊆ 2<ω is dense, and the family of
subsets of 2ω with the Baire property is closed under κ-length unions.
Then there is no κ-coloring of GS with respect to which pre-images
of singletons have the Baire property.

Proof of Lemma 3

Suppose that c is a κ-coloring of GS with respect to which pre-
images of singletons have the Baire property.

Then (c × c)−1(≤) has the Baire property.

But this directly contradicts Lemma 2.
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I. The G0 dichotomy
The canonical obstruction

Definition (Kechris-Solecki-Todorcevic)

Fix sequences sn ∈ 2n such that the set S = {sn | n ∈ ω} is dense.

Define G0 = G0(2ω) = GS .

Alternatively, let G0(2n) be the digraph on 2n given recursively by

G0(2n+1) = (G0(2n)⊗ 2) ∪ {(sn
a0, sn

a1)},

where G0(2n)⊗ 2 = {(sai , tai) | i ∈ 2 and (s, t) ∈ G0(2n)}. Then

G0(2ω) =
⋃
n∈ω
{(sax , tax) | (s, t) ∈ G0(2n) and x ∈ 2ω}.
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I. The G0 dichotomy
The canonical obstruction

N∅
N0 N1

0ax 1axN00 N01 N10 N11

0a0ax 0a1ax 1a0ax 1a1ax
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I. The G0 dichotomy
An ad-hoc definition

Definition

A set A ⊆ X is weakly κ-Souslin if it is the continuous image of a
κ+-Borel subset of κω.

Definition

For the purposes of these talks, we will say that an aleph κ is good if
any two disjoint weakly κ-Souslin subsets of a Hausdorff space can
be separated by a κ+-Borel set.

Our arguments in the classical case κ = ω generalize word-for-word
to the case of good alephs.
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I. The G0 dichotomy
An ad-hoc definition

In order to obtain generalizations to odd projective pointclasses un-
der AD, one must work with a different notion.

Definition

For the purposes of these talks, we will say that an aleph κ is nice if
any two disjoint weakly (< κ)-Souslin subsets of a Hausdorff space
can be separated by a κ-Borel set.

Question

Does ZF imply that all alephs are nice?
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I. The G0 dichotomy
My, goodness!

Lemma 4

Suppose that κ is a good aleph, n ∈ ω, (Xi )i∈n is a sequence of
Hausdorff spaces, R ⊆

∏
i∈n Xi is weakly κ-Souslin, and (Ai )i∈n is

an R-independent sequence of weakly κ-Souslin sets. Then there
is an R-independent sequence (Bi )i∈n of κ+-Borel sets such that
Ai ⊆ Bi for all i ∈ n.

Proof of Lemma 4

We will recursively construct κ+-Borel sets Bi ⊆ Xi such that
(Bi )i∈m

a(Ai )i∈n\m is R-independent for all m ∈ n.

Suppose that m ∈ n and we have already found (Bi )i∈m.
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I. The G0 dichotomy
My, goodness!

Proof of Lemma 4 (continued)

Set Pm =
∏

i∈m Bi × Xm ×
∏

i∈n\(m+1) Ai .

Set Qm =
∏

i∈m Bi × projXm
(R)×

∏
i∈n\(m+1) Ai .

Define A′m = projXm
(R ∩ Pm) = projXm

(R ∩ Qm).

Then Am ∩ A′m = ∅ and both of these sets are weakly κ-Souslin.

Fix a κ+-Borel set Bm ⊆ Xm separating Am from A′m.
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I. The G0 dichotomy
My, goodness!

Lemma 5

Suppose that κ is a good aleph, X is a Hausdorff space, G is a weakly
κ-Souslin digraph on X , and A ⊆ X is G -independent and weakly
κ-Souslin. Then there is a G -independent, κ+-Borel set B ⊆ X
such that A ⊆ B.

Proof of Lemma 5

By Lemma 4, there is a G -independent pair (B0,B1) of κ+-Borel
subsets of X such that A ⊆ B0 and A ⊆ B1.

Clearly the set B = B0 ∩ B1 is as desired.
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I. The G0 dichotomy
The main theorem

Theorem 6 (Kanovei, Kechris-Solecki-Todorcevic, Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, and G is a
κ-Souslin digraph on X . Then at least one of the following holds:

1 There is a κ+-Borel κ-coloring of G .

2 There is a continuous homomorphism from G0 to G .

Proof of Theorem 6

We will prove the special case of the theorem for good κ.

Before discussing the proof, we first note a standard reduction.
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I. The G0 dichotomy
The main theorem

Lemma 7

It is sufficient to handle the special case that X = κω.

Proof of Lemma 7

We can clearly assume that G 6= ∅, so projX (G ) 6= ∅, thus there is a
continuous surjection ϕ : κω → projX (G ). Set H = (ϕ×ϕ)−1(G ).

If there is a κ+-Borel κ-coloring of H, then Lemma 5 allows us to
produce a κ+-Borel κ-coloring of G .

If ψ : 2ω → κω is a continuous homomorphism from G0 to H, then
ϕ ◦ ψ is a continuous homomorphism from G0 to G .
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I. The G0 dichotomy
The main theorem

The idea behind the proof

We will try to build a continuous homomorphism ϕ from G0 to G .

Fix a tree i on κ× (κ× κ) such that G = projκω×κω [i].

When successful, our strategy will also produce continuous functions
ψk : 2ω → κω verifying our success, in the sense that

(ψk(x), (ϕ(sk
a0ax), ϕ(sk

a1ax))) ∈ [i]

for all k ∈ ω and x ∈ 2ω.
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I. The G0 dichotomy
The main theorem

The idea behind the proof (continued)

The functions ϕ and ψk will be of the form

ϕ(x) =
⋃
n∈ω

ϕn(x � n)

and

ψk(x) =
⋃

k∈n∈ω
ψk,n(x � (n − (k + 1))),

where ϕn : 2n → κn and ψk,n : 2n−(k+1) → κn for k ∈ n ∈ ω, and
(ϕn)n∈ω and (ψk,n)n∈ω are increasing.
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I. The G0 dichotomy
The main theorem

The idea behind the proof (continued)

There are of course many possible choices of (ϕn, (ψk,n)k∈n).

We will consider only those which are restrictions of homomorphisms
ϕ′n : 2n → κω from G0(2n) to G and verifiers ψ′k,n : 2n−(k+1) → κω.

The inability to extend such a (ϕn, (ψk,n)k∈n) to another such pair
(ϕn+1, (ψk,n+1)k∈n+1) will yield a G -independent, κ+-Borel set.
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I. The G0 dichotomy
The main theorem

The idea behind the proof (continued)

By removing these sets, we obtain a derivative on κω.

If the derivative succeeds in eventually cutting out the entire space
before stage κ+, then we will have our desired coloring.

Otherwise, we will be able to construct (ϕn, (ψk,n)k∈n) for n ∈ ω,
and thereby obtain the desired homomorphism.
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I. The G0 dichotomy
The main theorem

Definition

An approximation is a triple of the form a = (na, ϕa, (ψa
k)k∈na),

where na ∈ ω, ϕa : 2n
a → κn

a
, and ψa

k : 2n
a−(k+1) → κn

a
.

We say that an approximation a is extended by an approximation b
if for all k ∈ na, the following conditions are satisfied:

1 na ≤ nb.

2 ∀r ∈ 2n
a∀s ∈ 2n

b
(r v s =⇒ ϕa(r) v ϕb(s)).

3 ∀r ∈ 2n
a−(k+1)∀s ∈ 2n

b−(k+1) (r v s =⇒ ψa
k(r) v ψb

k (s)).

If nb = na + 1, then we say that b is a one-step extension of a.

Fix a κ-length well-ordering of the set of all approximations.
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I. The G0 dichotomy
The main theorem

Definition

A configuration is a triple of the form γ = (nγ , ϕγ , (ψγk )k∈nγ ), where
nγ ∈ ω, ϕγ : 2n

γ → κω, and ψγk : 2n
γ−(k+1) → κω, such that

(ψγk (s), (ϕγ(sk
a0as), ϕγ(sk

a1as))) ∈ [i]

for all k ∈ nγ and s ∈ 2n
γ−(k+1).

This simply says that ϕγ is a homomorphism from G0(2n
γ

) to G ,
and moreover, that this fact is verified by (ψγk )k∈nγ .
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I. The G0 dichotomy
The main theorem

Definition

We say that a configuration γ is compatible with an approximation
a if the following conditions are satisfied:

1 na = nγ .

2 ∀s ∈ 2n
a

(ϕa(s) v ϕγ(s)).

3 ∀k ∈ na∀s ∈ 2n
a−(k+1) (ψa

k(s) v ψγk (s)).

We say that γ is compatible with a set Y ⊆ κω if ϕγ [2n
γ

] ⊆ Y .

We use Γ(a,Y ) to denote the family of all configurations which are
compatible with both a and Y .
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I. The G0 dichotomy
The main theorem

Definition

We say that an approximation a is Y -terminal if Γ(b,Y ) = ∅ for all
one-step extensions b of a.

We use T (Y ) to denote the family of all such approximations.

Define A(a,Y ) ⊆ Y by A(a,Y ) = {ϕγ(sna) | γ ∈ Γ(a,Y )}.
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I. The G0 dichotomy
The main theorem

Lemma 8

Suppose that a is an approximation, Y ⊆ κω, and A(a,Y ) is not
G -independent. Then a is not Y -terminal.

Proof of Lemma 8

Fix configurations γ0, γ1 ∈ Γ(a,Y ) with (ϕγ0(sna), ϕγ1(sna)) ∈ G .

Fix x ∈ κω such that (x , (ϕγ0(sna), ϕγ1(sna))) ∈ [i].
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I. The G0 dichotomy
The main theorem

Proof of Lemma 8 (continued)

Let γ denote the configuration given by:

1 nγ = na + 1.

2 ∀i ∈ 2∀s ∈ 2n
a

(ϕγ(sai) = ϕγi (s)).

3 ∀i ∈ 2∀k ∈ na∀s ∈ 2n
a−(k+1) (ψγk (sai) = ψγik (s)).

4 ψγna(∅) = x .

Let b denote the approximation given by:

1 nb = nγ .

2 ∀s ∈ 2n
b

(ϕb(s) = ϕγ(s) � nb).

3 ∀k ∈ nb∀s ∈ 2n
b−(k+1) (ψb

k (s) = ψγk (s) � nb).
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I. The G0 dichotomy
The main theorem

Proof of Lemma 8 (continued)

Clearly γ is compatible with b.

Clearly b is a one-step extension of a.

It follows that a is not Y -terminal.
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I. The G0 dichotomy
The main theorem

Lemma 9

Suppose that a is an approximation, Y ⊆ κω is κ+-Borel, and a is Y -
terminal. Then there is a G -independent, κ+-Borel subset B(a,Y )
of κω such that A(a,Y ) ⊆ B(a,Y ).

Proof of Lemma 9

Lemma 8 ensures that A(a,Y ) is G -independent.

The desired result therefore follows from Lemma 5.
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I. The G0 dichotomy
The main theorem

Definition

Set Y ′ = Y \
⋃

a∈T (Y ) B(a,Y ).

Lemma 10

There is a κ+-Borel κ-coloring of G � (Y \ Y ′).

Proof of Lemma 10

Define c(y) = min{a ∈ T (Y ) | y ∈ B(a,Y )} for y ∈ Y \ Y ′.

As c−1({a}) ⊆ B(a,Y ) for all a ∈ T (Y ), it follows that c is a
coloring of G � (Y \ Y ′).
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I. The G0 dichotomy
The main theorem

Definition

Recursively define a sequence (Yα)α∈κ+ of subsets of κω by

Yα =


κω if α = 0,

Y ′β if α = β + 1, and⋂
β∈α Yβ if α is a limit ordinal.

Since there are only κ-many approximations, there exists α ∈ κ+

such that T (Yα) = T (Yα+1).
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I. The G0 dichotomy
The main theorem

Lemma 11

Suppose that the trivial approximation is Yα-terminal. Then there
is a κ+-Borel κ-coloring of G .

Proof of Lemma 11

Note first that Yα+1 = ∅, thus κω =
⋃
β≤α Yβ \ Yβ+1.

As all G � (Yβ \Yβ+1) admit κ+-Borel κ-colorings, so does G .
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I. The G0 dichotomy
The main theorem

Lemma 12

Suppose that a is an approximation, Y ⊆ κω is κ+-Borel, and a is
not Y ′-terminal. Then there is a one-step extension of a which is
not Y -terminal.

Proof of Lemma 12

Fix a one-step extension b of a for which Γ(b,Y ′) 6= ∅.

Fix a configuration γ ∈ Γ(b,Y ′).

Then ϕγ(snb) ∈ Y ′, thus b is not Y -terminal.
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I. The G0 dichotomy
The main theorem

Lemma 13

Suppose that the trivial approximation is not Yα-terminal. Then
there is a continuous homomorphism from G0 to G .

Proof of Lemma 13

By Lemma 12, there are approximations an = (n, ϕn, (ψk,n)k∈n) that
are not Yα-terminal, and each of which is extended by the next.

As promised earlier, we define ϕ : 2ω → κω and ψk : 2ω → κω by

ϕ(x) =
⋃
n∈ω

ϕn(x � n) and ψk(x) =
⋃

k∈n∈ω
ψk,n(x � (n − (k + 1))).
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I. The G0 dichotomy
The main theorem

Proof of Lemma 13 (continued)

It remains to show that if k ∈ ω and x ∈ 2ω, then

(ψk(x), (ϕ(sk
a0ax), ϕ(sk

a1ax))) ∈ [i].

It is enough to show that every open neighborhood U of the pair
(ψk(x), (ϕ(sk

a0ax), ϕ(sk
a1ax))) contains a point of [i].

Towards this end, fix n ∈ ω sufficiently large that k ∈ n and

Nψk,n(s) × (Nϕn(ska0as) ×Nϕn(ska1as)) ⊆ U,

where s = x � (n − (k + 1)).
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I. The G0 dichotomy
The main theorem

Proof of Lemma 13 (continued)

Our choice of an ensures the existence of γ ∈ Γ(an,Yα).

Then (ψγ(s), (ϕγ(sk
a0as), ϕγ(sk

a1as))) ∈ [i] ∩ U.

39 / 213



Part II

Applications of the G0 dichotomy
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II. Applications of the G0 dichotomy
The perfect set theorem

Theorem 14 (Mansfield, Souslin)

Suppose that κ is an aleph, X is a Hausdorff space, and A ⊆ X is
κ-Souslin. Then at least one of the following holds:

1 The cardinality of A is at most κ.

2 There is a continuous injection of 2ω into A.

Proof of Theorem 14

Define G = ∆(A)c .

If there is a κ-coloring of G , then the cardinality of A is at most κ.
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II. Applications of the G0 dichotomy
The perfect set theorem

Proof of Theorem 14 (continued)

By Theorem 6, we can assume that there is a continuous homomor-
phism ϕ : 2ω → A from G0 to G .

Define E = (ϕ× ϕ)−1(∆(A)).

Then E is an equivalence relation on 2ω with the Baire property
which is disjoint from G0.
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II. Applications of the G0 dichotomy
The perfect set theorem

Lemma 15

The equivalence relation E is meager.

Proof of Lemma 15

By Kuratowski-Ulam, it is enough to show each E -class is meager.

Suppose that C is a non-meager E -class.

By Lemma 1, there exists (x , y) ∈ G0 � C .

But this contradicts the fact that E is disjoint from G0.
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II. Applications of the G0 dichotomy
The perfect set theorem

Proof of Theorem 14 (continued)

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into E .

It follows that ϕ ◦ ψ is a continuous injection of 2ω into A.
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II. Applications of the G0 dichotomy
Colorings of open graphs

Theorem 16 (Feng)

Suppose that κ is an aleph, X is a κ-Souslin Hausdorff space, and
G is an open graph on X . Then at least one of the following holds:

1 There is a κ+-Borel κ-coloring of G .

2 There is a continuous embedding of ∆(2ω) into G c .

Proof of Theorem 16

By Theorem 6, we can assume there is a continuous homomorphism
ϕ : 2ω → X from G0 to G .
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II. Applications of the G0 dichotomy
Colorings of open graphs

Proof of Theorem 16 (continued)

Define H = (ϕ× ϕ)−1(G ).

Then H is an open graph intersecting all non-empty open squares.
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II. Applications of the G0 dichotomy
Colorings of open graphs

Lemma 17

There is a continuous embedding ψ of ∆(2ω) into Hc .

Proof of Lemma 17

We will find a strictly increasing sequence of natural numbers kn
and an increasing sequence of functions ψn : 2n → 2kn such that

∀n ∈ ω∀s, t ∈ 2n (s 6= t =⇒ Nψn(s) ×Nψn(t) ⊆ H).

Suppose that we have already found ψn.
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II. Applications of the G0 dichotomy
Colorings of open graphs

Proof of Lemma 17 (continued)

For each s ∈ 2n, fix (xs , ys) ∈ H � Nψn(s).

Fix kn+1 > kn such that Nxs�kn+1 ×Nys�kn+1 ⊆ H for all s ∈ 2n.

Define ψn+1(s) = xs � kn+1.

Clearly ϕ ◦ ψ is a continuous embedding of ∆(2ω) into G c .
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II. Applications of the G0 dichotomy
Uniformization of sets with thin sections

Theorem 18 (Lusin-Novikov)

Suppose that κ is an aleph, X and Y are Hausdorff spaces, and
R ⊆ X × Y is κ-Souslin. Then at least one of the following holds:

1 The set R is the union of κ-many relatively κ+-Borel graphs
of partial functions.

2 There is a continuous injection of 2ω into some vertical
section of R.

Proof of Theorem 18

Define G = {((x0, y0), (x1, y1)) ∈ R × R | x0 = x1 and y0 6= y1}.

If there is a κ+-Borel κ-coloring of G , then R is the union of κ-many
relatively κ+-Borel graphs of partial functions.
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II. Applications of the G0 dichotomy
Uniformization of sets with thin sections

Proof of Theorem 18 (continued)

By Theorem 6, we can assume there is a continuous homomorphism
ϕ : 2ω → R from G0 to G .

Set ϕX = projX ◦ ϕ and ϕY = projY ◦ ϕ.

Then ϕX is a continuous homomorphism from E0 to ∆(X ).

Let x denote the constant value of ϕX .
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II. Applications of the G0 dichotomy
Uniformization of sets with thin sections

Proof of Theorem 18 (continued)

Define E = (ϕY × ϕY )−1(∆(Y )).

By Lemma 15, the equivalence relation E is meager.

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into E .

It follows that ϕY ◦ ψ is a continuous injection of 2ω into Rx .
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II. Applications of the G0 dichotomy
Universally Baire sets

Definition

A set B ⊆ X is ω-universally Baire if for every continuous function
ϕ : ωω → X , the set ϕ−1(B) has the Baire property.

Definition

A set B ⊆ X is weakly ω-universally Baire if for every continuous
function ϕ : 2ω → X , the set ϕ−1(B) has the Baire property.

Question

Does ZFC imply that there is a weakly ω-universally Baire set which
is not ω-universally Baire?
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II. Applications of the G0 dichotomy
The perfect set theorem for equivalence relations

Theorem 19 (Silver, Harrington-Shelah)

Suppose that κ is an aleph, X is a Hausdorff space, and E is a
weakly ω-universally Baire, co-κ-Souslin equivalence relation on X .
Then at least one of the following holds:

1 The equivalence relation E has at most κ-many classes.

2 There is a continuous embedding of ∆(2ω) into E .

Proof of Theorem 19

Define G = E c .

If there is a κ-coloring of G , then E has at most κ-many classes.
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II. Applications of the G0 dichotomy
The perfect set theorem for equivalence relations

Proof of Theorem 19 (continued)

By Theorem 6, we can assume that there is a continuous homomor-
phism ϕ : 2ω → X from G0 to G .

Define F = (ϕ× ϕ)−1(E ).

By Lemma 15, the equivalence relation F is meager.

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into F .

Then ϕ ◦ ψ is a continuous embedding of ∆(2ω) into E .
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-orders

Theorem 20 (Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a
weakly ω-universally Baire, co-κ-Souslin quasi-order on X . Then at
least one of the following holds:

1 The equivalence relation ≡R has at most κ-many classes.

2 There is a continuous embedding of ∆(2ω) or Rlex(2ω) into R.

Proof of Theorem 20

Define G = Rc .

If there is a κ-coloring of G , then ≡R has at most κ-many classes.
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-orders

Proof of Theorem 20 (continued)

By Theorem 6, we can assume that there is a continuous homomor-
phism ϕ : 2ω → X from G0 to G .

Define S = (ϕ× ϕ)−1(R).

If there is a non-empty open square in which S is meager, then
Mycielski yields a continuous embedding ψ of ∆(2ω) into S .

Then ϕ ◦ ψ is a continuous embedding of ∆(2ω) into R.
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-orders

Proof of Theorem 20 (continued)

So suppose that S is non-meager in every non-empty, open square.

By Lemma 15, the equivalence relation ≡S is meager.
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-orders

Lemma 21

There is a continuous embedding ψ of Rlex(2ω) into S .

Proof of Lemma 21

We will find a strictly increasing sequence of natural numbers kn,
an increasing sequence of functions ψn : 2n → 2kn , extensions us,i of
ψn(s), and decreasing sequences (Um,s)m∈ω of dense, open subsets
of Nus,0 ×Nus,1 with

⋂
m∈ω Um,s ⊆ <S , such that

Nψn(ra0as) ×Nψn(ra1at) ⊆ Un,r

for all m ∈ n ∈ ω, r ∈ 2m, and s, t ∈ 2n−(m+1).
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-orders

Suppose that we have already found ψn, as well as us , vs , and
(Um,s)m∈ω for all s ∈ 2<n.

For each s ∈ 2n, fix extensions us,i of ψn(s) such that <S is comea-
ger in Nus × Nvs , as well as decreasing sequences (Um,s)m∈ω of
dense, open subsets of Nus ×Nvs with

⋂
m∈ω Um,s ⊆ <S .

Define ψ′n+1 : 2n+1 → 2<ω by ψ′n+1(sai) = us,i .
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-orders

Obtain ψn+1 by fixing an enumeration of the pairs of length n of the
form (ra0as, ra1at), and recursively extending ψ′n+1(ra0as) and
ψ′n+1(ra1at) so that Nψn+1(ra0as) ×Nψn+1(ra1at) ⊆ Un,r .

Cleary ϕ ◦ ψ is a continuous embedding of Rlex(2ω) into R.
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II. Applications of the G0 dichotomy
The perfect set theorem for linear quasi-orders

Theorem 22 (Friedman-Shelah)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a linear,
weakly ω-universally Baire, co-κ-Souslin quasi-order on X . Then at
least one of the following holds:

1 There is an R-dense set of cardinality κ.

2 There is a continuous embedding of 2ω into a pairwise disjoint
set of non-empty, open R-intervals.

Proof of Theorem 22

Set I = {(x , y) ∈ X × X | (x , y)R 6= ∅}.

Define G = {((x0, y0), (x1, y1)) ∈ I × I | [x0, y0]R ∩ [x1, y1]R = ∅}.
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II. Applications of the G0 dichotomy
The perfect set theorem for linear quasi-orders

Proof of Theorem 22 (continued)

If there is a κ-coloring of G , then the family of all closed R-intervals
with non-empty interiors can be written as the union of κ-many
intersecting families.

Under ACκ, this is easily seen to be equivalent to the existence of an
R-dense set of cardinality κ.
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II. Applications of the G0 dichotomy
The perfect set theorem for linear quasi-orders

Proof of Theorem 22 (continued)

By Theorem 6, we can assume that there is a continuous homomor-
phism ϕ : 2ω → I from G0 to G .

Define H = (ϕ× ϕ)−1(G ).
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II. Applications of the G0 dichotomy
The perfect set theorem for linear quasi-orders

Lemma 23

The relation Hc is meager.

Proof of Lemma 23

Note first that Hc =
⋃

i , j∈2 Hij , where

Hij = {(x0, x1) ∈ 2ω × 2ω | ϕi (xj) ∈ [ϕ0(x1−j), ϕ1(x1−j)]R}.

By symmetry, it is sufficient to show that H00 is meager.

By Kuratowski-Ulam, it is enough to show that if (H00)x0 has the
Baire property, then it is meager.
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II. Applications of the G0 dichotomy
The perfect set theorem for linear quasi-orders

Proof of Lemma 23 (continued)

If it is non-meager, then Lemma 1 yields (x1, x2) ∈ G0 � (H00)x0 .

Then (ϕ(x1), ϕ(x2)) /∈ G , a contradiction.
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II. Applications of the G0 dichotomy
The perfect set theorem for linear quasi-orders

Proof of Theorem 22 (continued)

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into Hc .

Then ϕ ◦ ψ is a continuous embedding of ∆(2ω) into G c .

66 / 213



II. Applications of the G0 dichotomy
The perfect set theorem for quasi-metrics

Theorem 24 (Friedman-Harrington-Kechris)

Suppose that κ is an aleph, X is a Hausdorff space, and d is a quasi-
metric on X such that for all ε > 0, the set d−1[0, ε) is ω-universally
Baire and co-κ-Souslin. Then one of the following holds:

1 There is a d-dense set of cardinality at most κ.

2 There is a continuous embedding of ∆(2ω) into d−1[0, ε), for
some ε > 0.

Proof of Theorem 24

For each n ∈ ω \ {0}, define Gn = d−1[1/n,∞).
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-metrics

Proof of Theorem 24 (continued)

If each Gn has a κ-coloring, then there is a basis of size at most κ.

Under ACκ, this is easily seen to be equivalent to the existence of a
d-dense set of cardinality at most κ.
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-metrics

Proof of Theorem 24 (continued)

By Theorem 6, we can assume that there is a continuous homomor-
phism ϕ : 2ω → X from G0 to some Gn.

Define e : 2ω → R by e(x , y) = d(ϕ(x), ϕ(y)).
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-metrics

Lemma 25

The set e−1[0, 1/2n) is meager.

Proof of Lemma 25

By Kuratowski-Ulam, it is enough to show that if Be(x , 1/2n) has
the Baire property, then it is meager.

Suppose that Be(x , 1/2n) is non-meager.

By Lemma 1, there exists (y , z) ∈ G0 � Be(x , 1/2n).

Then e(y , z) < 1/n, thus (ϕ(y), ϕ(z)) /∈ Gn, a contradiction.
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II. Applications of the G0 dichotomy
The perfect set theorem for quasi-metrics

Proof of Theorem 24 (continued)

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into the
relation e−1[0, 1/2n).

It follows that ϕ ◦ ψ is a continuous embedding of ∆(2ω) into the
relation d−1[0, 1/2n).
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II. Applications of the G0 dichotomy
Glimm-Effros for equivalence relations with thin classes

Theorem 26 (Dougherty-Jackson-Kechris)

Suppose that κ is an aleph, X is a Hausdorff space, and E is a weakly
ω-universally Baire, κ-Souslin equivalence relation on X . Then at
least one of the following holds:

1 There are κ-many κ+-Borel partial E -transversals covering X .

2 There is a continuous injection of 2ω into some E -class.

3 There is a continuous embedding of E0 into E .

Proof of Theorem 26

Define G = E \∆(X ).
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II. Applications of the G0 dichotomy
Glimm-Effros for equivalence relations with thin classes

Proof of Theorem 26 (continued)

If there is a κ+-Borel κ-coloring of G , then there is a family of
κ-many κ+-Borel partial transversals of E which cover X .

By Theorem 6, we can assume there is a continuous homomorphism
ϕ : 2ω → X from G0 to G .

Define D = (ϕ× ϕ)−1(∆(X )).

By Lemma 15, the equivalence relation D is meager.
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II. Applications of the G0 dichotomy
Glimm-Effros for equivalence relations with thin classes

Proof of Theorem 26 (continued)

If the equivalence relation F = (ϕ × ϕ)−1(E ) is non-meager, then
Kuratowski-Ulam yields a non-meager F -class C .

Mycielski gives a continuous embedding ψ of ∆(2ω) into D � C .

Then ϕ ◦ ψ is a continuous injection of 2ω into ϕ[C ].

Otherwise, F is a meager equivalence relation containing E0.
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II. Applications of the G0 dichotomy
Glimm-Effros for equivalence relations with thin classes

Lemma 27

There is a continuous embedding ψ of (∆(2ω),E0) into (D,F ).

Proof of Lemma 27

Fix a decreasing sequence of dense, open sets Un ⊆ Dc such that
F ∩

⋂
n∈ω Un = ∅.

It is enough to construct kn ∈ ω and ui ,n ∈ 2kn such that

∀n ∈ ω∀s, t ∈ 2n (Nψn+1(sa0) ×Nψn+1(ta1) ⊆ Un),

where ψn : 2n → 2
∑

m∈n km is given by ψn(s) =
⊕

m∈n us(m),m.
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II. Applications of the G0 dichotomy
Glimm-Effros for equivalence relations with thin classes

Proof of Lemma 27 (continued)

Suppose that we have found km and ui ,m for all i ∈ 2 and m ∈ n.

Fix an enumeration (sk , tk)k≤` of 2n × 2n.

Recursively construct increasing sequences (ui ,k,n)k≤` such that

∀k ≤ ` (Nψn(sk )au0,k,n
×Nψn(tk )au1,k,n

⊆ Un).
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II. Applications of the G0 dichotomy
Glimm-Effros for equivalence relations with thin classes

Set ui ,n = ui ,`,n and kn = |u0,n| = |u1,n|.

Clearly ϕ ◦ ψ is a continuous embedding of E0 into E .
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Definition

Let F0 denote the equivalence relation on 2ω given by

xF0y ⇐⇒ (parity(x � n))n∈ωE0(parity(y � n))n∈ω,

where parity(s) =
∑

i∈n s(i) (mod 2) for n ∈ ω and s ∈ 2n.
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Theorem 28 (Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, E is a weakly
ω-universally Baire, κ-Souslin equivalence relation on X , and F is a
weakly ω-universally Baire, co-κ-Souslin equivalence relation on X
of index two below E . Then at least one of the following holds:

1 There is a cover of X with κ-many κ+-Borel partial transver-
sals of E over F .

2 There is a continuous embedding of (E0,F0) into (E ,F ).

Proof of Theorem 28

Define G = E \ F .
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Proof of Theorem 28 (continued)

If there is a κ+-Borel κ-coloring of G , then there are κ-many κ+-
Borel partial transversals of E over F which cover X .

By Theorem 6, we can assume that there is a continuous homomor-
phism ϕ : 2ω → X from G0 to G .

Define E ′ = (ϕ× ϕ)−1(E ) and F ′ = (ϕ× ϕ)−1(F ).
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Proof of Theorem 28 (continued)

By Lemma 15, the equivalence relation F ′ is meager.

Kuratowski-Ulam then implies that E ′ is meager.

Observe that F0 ⊆ F ′ and E0 \ F0 ⊆ E ′ \ F ′.

Set D ′ = (ϕ× ϕ)−1(∆(X )).
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Lemma 29

There is a continuous embedding ψ of the triple (∆(2ω),E0,F0) into
the triple (D ′,E ′,F ′).

Proof of Lemma 29

Fix a decreasing sequence of dense, open sets Un ⊆ (D ′)c such that
E ′ ∩

⋂
n∈ω Un = ∅.

We construct kn ∈ ω and ui ,n ∈ 2kn with differing parities such that

∀n ∈ ω∀s, t ∈ 2n (Nψn+1(sa0) ×Nψn+1(ta1) ⊆ Un),

where ψn : 2n → 2
∑

m∈n km is given by ψn(s) =
⊕

m∈n us(m),m.
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Proof of Lemma 29 (continued)

Suppose that we have found km and ui ,m for all i ∈ 2 and m ∈ n.

Fix an enumeration (sk , tk)k≤` of 2n × 2n.

Recursively construct increasing sequences (ui ,k,n)k≤` such that

∀k ≤ ` (Nψn(sk )au0,k,n
×Nψn(tk )au1,k,n

⊆ Un).
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II. Applications of the G0 dichotomy
Glimm-Effros for quotients

Proof of Lemma 29 (continued)

If parity(u0,`,n) 6= parity(u1,`,n), then set ui ,n = ui ,`,n.

Otherwise, set ui ,n = ui ,`,n
ai .

Define kn = |u0,n| = |u1,n|.

Clearly ϕ◦ψ is a continuous embedding of (E0,F0) into (E ,F ).
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Part III

The hypergraph G0 dichotomy
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III. The hypergraph G0 dichotomy
Graph-theoretic definitions

Definition

A (≤ d)-dimensional dihypergraph on X is a set G ⊆ X d of non-
constant sequences.

The restriction of G to Y ⊆ X is given by G � Y = G ∩ Y d .

A set Y ⊆ X is G -independent if G � Y = ∅.

An (I -)coloring of G is a function c : X → I with the property that
for all i ∈ I , the set c−1({i}) is G -independent.
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III. The hypergraph G0 dichotomy
Graph-theoretic definitions

Example

The dihypergraph on dω associated with S ⊆ d<ω is given by

GS = {(saiax)i∈d | s ∈ S and x ∈ dω}.

Definition

A set S ⊆ d<ω is dense if ∀r ∈ d<ω∃s ∈ S (r v s).
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III. The hypergraph G0 dichotomy
Dihypergraphs without large independent sets

Lemma 30

Suppose that d ∈ ω \ 2, B ⊆ dω is a non-meager set with the Baire
property, and S ⊆ d<ω is dense. Then B is not GS -independent.

Proof of Lemma 30

Fix r ∈ d<ω such that B is comeager in Nr .

Fix s ∈ S such that r v s.

Then (saiax)i∈d ∈ GS � B for comeagerly many x ∈ dω.
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III. The hypergraph G0 dichotomy
Dihypergraphs without measurable colorings

Lemma 31

Suppose that d ∈ ω \ 2, κ is an aleph, S ⊆ d<ω is dense, and c is
a κ-coloring of GS . Then the set (c × c)−1(≤) does not have the
Baire property.

Proof of Lemma 31

Set R = (c × c)−1(≤) and E = (c × c)−1(∆(κ)).
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III. The hypergraph G0 dichotomy
Dihypergraphs without measurable colorings

Proof of Lemma 31 (continued)

If R has the Baire property, then Kuratowski-Ulam yields a least
α ∈ κ for which c−1(≤α) is non-meager and has the Baire property.

Then the E -class C = c−1({α}) is non-meager.

By Lemma 30, there exists (xi )i∈d ∈ GS � C , a contradiction.
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III. The hypergraph G0 dichotomy
Dihypergraphs without measurable colorings

Lemma 32

Suppose that d ∈ ω \ 2, κ is an aleph, S ⊆ d<ω is dense, and
the family of subsets of dω with the Baire property is closed under
κ-length unions. Then there is no κ-coloring of GS with respect to
which pre-images of singletons have the Baire property.

Proof of Lemma 32

Suppose that c is a κ-coloring of GS with respect to which pre-
images of singletons have the Baire property.

Then (c × c)−1(≤) has the Baire property.

But this directly contradicts Lemma 31.
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III. The hypergraph G0 dichotomy
The canonical obstruction

Definition

Fix sequences sn ∈ dn such that the set S = {sn | n ∈ ω} is dense.

Define G0(dω) = GS .
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III. The hypergraph G0 dichotomy
My, goodness!

Lemma 33

Suppose that d ∈ ω \ 2, κ is a good aleph, X is a Hausdorff space,
G is a weakly κ-Souslin, (≤ d)-dimensional dihypergraph on X , and
A ⊆ X is G -independent and weakly κ-Souslin. Then there is a
G -independent, κ+-Borel set B ⊆ X such that A ⊆ B.

Proof of Lemma 33

By Lemma 4, there is a G -independent sequence (Bi )i∈d of κ+-Borel
subsets of X such that A ⊆ Bi for all i ∈ d .

Clearly the set B =
⋂

i∈d Bi is as desired.
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III. The hypergraph G0 dichotomy
The main theorem

Theorem 34 (Louveau)

Suppose that d ∈ ω \ 2, κ is an aleph, X is a Hausdorff space, and
G is a κ-Souslin, (≤ d)-dimensional dihypergraph on X . Then at
least one of the following holds:

1 There is a κ+-Borel κ-coloring of G .

2 There is a continuous homomorphism from G0(dω) to G .

Proof of Theorem 34

We will prove the special case of the theorem for good κ.
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III. The hypergraph G0 dichotomy
The main theorem

Lemma 35

It is sufficient to handle the special case that X = κω.

Proof of Lemma 35

We can clearly assume that G 6= ∅, so projX (G ) 6= ∅, thus there is
a continuous surjection ϕ : κω → projX (G ). Set H = (ϕd)−1(G ).

If there is a κ+-Borel κ-coloring of H, then Lemma 33 allows us to
produce a κ+-Borel κ-coloring of G .

If ψ : dω → κω is a continuous homomorphism from G0(dω) to H,
then ϕ ◦ ψ is a continuous homomorphism from G0(dω) to G .
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III. The hypergraph G0 dichotomy
The main theorem

Definition

An approximation is a triple of the form a = (na, ϕa, (ψa
k)k∈na),

where na ∈ ω, ϕa : dna → κn
a
, and ψa

k : dna−(k+1) → κn
a
.

We say that an approximation a is extended by an approximation b
if for all k ∈ na, the following conditions are satisfied:

1 na ≤ nb.

2 ∀r ∈ dna∀s ∈ dnb (r v s =⇒ ϕa(r) v ϕb(s)).

3 ∀r ∈ dna−(k+1)∀s ∈ dnb−(k+1) (r v s =⇒ ψa
k(r) v ψb

k (s)).

If nb = na + 1, then we say that b is a one-step extension of a.

Fix a κ-length well-ordering of the set of all approximations.
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III. The hypergraph G0 dichotomy
The main theorem

Proof of Theorem 34 (continued)

Fix a tree i on κ× κd such that G = proj(κω)d [i].

Definition

A configuration is a triple of the form γ = (nγ , ϕγ , (ψγk )k∈nγ ), where
nγ ∈ ω, ϕγ : dnγ → κω, and ψγk : dnγ−(k+1) → κω, such that

(ψγk (s), (ϕγ(sk
aias))i∈d) ∈ [i]

for all k ∈ nγ and s ∈ dnγ−(k+1).
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III. The hypergraph G0 dichotomy
The main theorem

Definition

We say that a configuration γ is compatible with an approximation
a if the following conditions are satisfied:

1 na = nγ .

2 ∀s ∈ dna (ϕa(s) v ϕγ(s)).

3 ∀k ∈ na∀s ∈ dna−(k+1) (ψa
k(s) v ψγk (s)).

We say that γ is compatible with a set Y ⊆ κω if ϕγ [dnγ ] ⊆ Y .

We use Γ(a,Y ) to denote the family of all configurations which are
compatible with both a and Y .
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III. The hypergraph G0 dichotomy
The main theorem

Definition

We say that an approximation a is Y -terminal if Γ(b,Y ) = ∅ for all
one-step extensions b of a.

We use T (Y ) to denote the family of all such approximations.

Define A(a,Y ) ⊆ Y by A(a,Y ) = {ϕγ(sna) | γ ∈ Γ(a,Y )}.
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III. The hypergraph G0 dichotomy
The main theorem

Lemma 36

Suppose that a is an approximation, Y ⊆ κω, and A(a,Y ) is not
G -independent. Then a is not Y -terminal.

Proof of Lemma 36

Fix configurations γi ∈ Γ(a,Y ) with (ϕγi (sna))i∈d ∈ G .

Fix x ∈ κω such that (x , (ϕγi (sna))i∈d) ∈ [i].
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III. The hypergraph G0 dichotomy
The main theorem

Proof of Lemma 36 (continued)

Let γ denote the configuration given by:

1 nγ = na + 1.

2 ∀i ∈ d∀s ∈ dna (ϕγ(sai) = ϕγi (s)).

3 ∀i ∈ d∀k ∈ na∀s ∈ dna−(k+1) (ψγk (sai) = ψγik (s)).

4 ψγna(∅) = x .

Let b denote the approximation given by:

1 nb = nγ .

2 ∀s ∈ dnb (ϕb(s) = ϕγ(s) � nb).

3 ∀k ∈ nb∀s ∈ dnb−(k+1) (ψb
k (s) = ψγk (s) � nb).
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III. The hypergraph G0 dichotomy
The main theorem

Proof of Lemma 36 (continued)

Clearly γ is compatible with b.

Clearly b is a one-step extension of a.

It follows that a is not Y -terminal.
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III. The hypergraph G0 dichotomy
The main theorem

Lemma 37

Suppose that a is an approximation, Y ⊆ κω is κ+-Borel, and a is Y -
terminal. Then there is a G -independent, κ+-Borel subset B(a,Y )
of κω such that A(a,Y ) ⊆ B(a,Y ).

Proof of Lemma 37

Lemma 36 ensures that A(a,Y ) is G -independent.

The desired result therefore follows from Lemma 33.
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III. The hypergraph G0 dichotomy
The main theorem

Definition

Set Y ′ = Y \
⋃

a∈T (Y ) B(a,Y ).

Lemma 38

There is a κ+-Borel κ-coloring of G � (Y \ Y ′).

Proof of Lemma 38

Define c(y) = min{a ∈ T (Y ) | y ∈ B(a,Y )} for y ∈ Y \ Y ′.

As c−1({a}) ⊆ B(a,Y ) for all a ∈ T (Y ), it follows that c is a
coloring of G � (Y \ Y ′).
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III. The hypergraph G0 dichotomy
The main theorem

Definition

Recursively define a sequence (Yα)α∈κ+ of subsets of κω by

Yα =


κω if α = 0,

Y ′β if α = β + 1, and⋂
β∈α Yβ if α is a limit ordinal.

Since there are only κ-many approximations, there exists α ∈ κ+

such that T (Yα) = T (Yα+1).
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III. The hypergraph G0 dichotomy
The main theorem

Lemma 39

Suppose that the trivial approximation is Yα-terminal. Then there
is a κ+-Borel κ-coloring of G .

Proof of Lemma 39

Note first that Yα+1 = ∅, thus κω =
⋃
β≤α Yβ \ Yβ+1.

As all G � (Yβ \Yβ+1) admit κ+-Borel κ-colorings, so does G .
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III. The hypergraph G0 dichotomy
The main theorem

Lemma 40

Suppose that a is an approximation, Y ⊆ κω is κ+-Borel, and a is
not Y ′-terminal. Then there is a one-step extension of a which is
not Y -terminal.

Proof of Lemma 40

Fix a one-step extension b of a for which Γ(b,Y ′) 6= ∅.

Fix a configuration γ ∈ Γ(b,Y ′).

Then ϕγ(snb) ∈ Y ′, thus b is not Y -terminal.
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III. The hypergraph G0 dichotomy
The main theorem

Lemma 41

Suppose that the trivial approximation is not Yα-terminal. Then
there is a continuous homomorphism from G0 to G .

Proof of Lemma 41

By Lemma 40, there are approximations an = (n, ϕn, (ψk,n)k∈n) that
are not Yα-terminal, and each of which is extended by the next.

Define ϕ : dω → κω and ψk : dω → κω by

ϕ(x) =
⋃
n∈ω

ϕn(x � n) and ψk(x) =
⋃

k∈n∈ω
ψk,n(x � (n − (k + 1))).
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III. The hypergraph G0 dichotomy
The main theorem

Proof of Lemma 41 (continued)

It remains to show that if k ∈ ω and x ∈ dω, then

(ψk(x), (ϕ(sk
aiax))i∈d) ∈ [i].

It is enough to show that every open neighborhood U of the pair
(ψk(x), (ϕ(sk

aiax))i∈d) contains a point of [i].

Towards this end, fix n ∈ ω sufficiently large that k ∈ n and

Nψk,n(s) ×
∏
i∈d
Nϕn(skaias) ⊆ U,

where s = x � (n − (k + 1)).
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III. The hypergraph G0 dichotomy
The main theorem

Proof of Lemma 41 (continued)

Our choice of an ensures the existence of γ ∈ Γ(an,Yα).

Then (ψγ(s), (ϕγ(sk
aias))i∈d) ∈ [i] ∩ U.
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Part IV

Applying the hypergraph dichotomy
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IV. Applying the hypergraph dichotomy
Covering vector spaces

Theorem 42 (Kunen-Miller-van Engelen)

Suppose that d ∈ ω\2, κ is an aleph, X is a Hausdorff space, A ⊆ X
is analytic, and X is equipped with a vector space structure for which
the set D ⊆ X≤d of dependent sequences is weakly ω-universally
Baire and co-κ-Souslin. Then at least one of the following holds:

1 There is a cover of A with κ-many translates of (≤ d)-dimen-
sional, κ+-Borel subsets of X .

2 There is a continuous embedding of the set of non-injective
sequences in (2ω)d+1 into Ad+1 ∩ D.
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IV. Applying the hypergraph dichotomy
Covering vector spaces

Proof of Theorem 42

For each ` ≤ d , set G` = {(xi )i≤` ∈ A`+1 | (xi − x`)i∈` /∈ D}.

If there is a κ+-Borel κ-coloring of Gd , then we obtain the covering.

By Theorem 34, we can assume that there is a continuous homo-
morphism ϕ : (d + 1)ω → X from G0((d + 1)ω) to Gd .

For each ` ≤ d , set H` = (ϕ`)−1(G`).
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IV. Applying the hypergraph dichotomy
Covering vector spaces

Lemma 43

Suppose that ` ≤ d . Then Hc
` is meager.

Proof of Lemma 43

By Kuratowski-Ulam, it is enough to show that if ` ∈ d , x ∈ H`,
and (H`+1)x has the Baire property, then (H`+1)x is comeager.

Suppose that (H`+1)x is not comeager.

Then there exists (xi )i∈d+1 ∈ G0((d + 1)ω) � (H`+1)cx .

Then (ϕ(xi ))i∈d+1 /∈ G , a contradiction.
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IV. Applying the hypergraph dichotomy
Covering vector spaces

Proof of Theorem 42 (continued)

By Mycielski, there is a continuous embedding ψ of the set of non-
injective sequences in (2ω)d into Dd .

Then ϕ ◦ ψ is a continuous embedding of the set of non-injective
sequences in (2ω)d into D.

115 / 213



Part V

The sequential G0 dichotomy
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V. The sequential G0 dichotomy
Basic graph-theoretic definitions

Definition

A set Y ⊆ X is (Gn)n∈ω-independent if it is Gn-independent for
some n ∈ ω.

An (I -)coloring of (Gn)n∈ω is a function c : X → I with the property
that for all i ∈ I , the set c−1({i}) is (Gn)n∈ω-independent.

Suppose that (dn)n∈ω ∈ (ω \ 2)ω and f : ω×ω → ω is a bijection.
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V. The sequential G0 dichotomy
Basic graph-theoretic definitions

Example

Associated with each set S ⊆
⋃

n∈ω
∏

m∈n df0(m) are the sets

Sk = {s ∈ S ∩
∏
m∈n

df0(m) | n ∈ ω and f0(n) = k}

and the dihypergraphs

G k
S = {(saiax)i∈d | s ∈ Sk and x ∈

∏
n∈ω

df0(n)}.
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V. The sequential G0 dichotomy
Basic graph-theoretic definitions

Definition

A set S ⊆
⋃

n∈ω
∏

m∈n df0(m) is dense if

∀k ∈ ω∀n ∈ ω∀r ∈
∏
m∈n

df0(m)∃s ∈ Sk (r v s).

Definition

Fix sn ∈
∏

m∈n df0(m) such that the set S = {sn | n ∈ ω} is dense.

Define G k
0 (
∏

n∈ω df0(n)) = G k
S .

Define also G k
0 = G k

0 (2ω).
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V. The sequential G0 dichotomy
The main theorem

Theorem 44

Suppose that κ is an aleph, X is a Hausdorff space, and G k is a
κ-Souslin, (≤ dk)-dimensional dihypergraph on X . Then at least
one of the following holds:

1 There is a κ+-Borel κ-coloring of G .

2 There is a continuous homomorphism from the ω-sequence
(G k

0 (
∏

n∈ω df0(n)))k∈ω to the ω-sequence (G k)k∈ω.

Proof of Theorem 44

We will prove the special case of the theorem for good κ.
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V. The sequential G0 dichotomy
The main theorem

Lemma 45

It is sufficient to handle the special case that X = κω.

Proof of Lemma 45

We can clearly assume that every G k is non-empty, thus so too is
every set of the form projX (G k) 6= ∅.

Fix a continuous surjection ϕ : κω →
⋃

k∈ω projX (G k).

Set Hk = (ϕd)−1(G k).
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V. The sequential G0 dichotomy
The main theorem

Proof of Lemma 45 (continued)

If there is a κ+-Borel κ-coloring of (Hk)k∈ω, then Lemma 5 allows
us to produce a κ+-Borel κ-coloring of (G k)k∈ω.

If ψ :
∏

n∈ω df0(n) → κω is a continuous homomorphism from

(G k
0 (
∏

n∈ω df0(n)))k∈ω to (Hk)k∈ω, then ϕ ◦ ψ is a continuous ho-

momorphism from (G k
0 (
∏

n∈ω df0(n)))k∈ω to (G k)k∈ω.
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V. The sequential G0 dichotomy
The main theorem

Definition

An approximation is a triple a = (na, ϕa, (ψa
k)k∈na), where na ∈ ω,

ϕa :
∏

m∈na df0(m) → κn
a
, and ψa

k :
∏

m∈na\(k+1) df0(m) → κn
a
.

We say that an approximation a is extended by an approximation b
if ϕa and (ψa

k)k∈na are extended by ϕb and (ψb
k )k∈na .

If nb = na + 1, then we say that b is a one-step extension of a.

Fix a κ-length well-ordering of the set of all approximations.
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V. The sequential G0 dichotomy
The main theorem

Proof of Theorem 44 (continued)

Fix trees ik on κ× κd such that G k = proj(κω)d [ik ].

Definition

A configuration is a triple γ = (nγ , ϕγ , (ψγk )k∈nγ ), where nγ ∈ ω,
ϕγ :

∏
m∈nγ df0(m) → κω, and ψγk :

∏
m∈nγ\(k+1) df0(m) → κω, with

(ψγk (s), (ϕγ(sk
aias))i∈df0(k)

) ∈ [if0(k)]

for all k ∈ nγ and s ∈
∏

m∈nγ\(k+1) df0(m).
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V. The sequential G0 dichotomy
The main theorem

Definition

We say that a configuration γ is compatible with an approximation
a if the following conditions are satisfied:

1 na = nγ .

2 ∀s ∈
∏

m∈na df0(m) (ϕa(s) v ϕγ(s)).

3 ∀k ∈ na∀s ∈
∏

m∈na\(k+1) df0(m) (ψa
k(s) v ψγk (s)).

We say that γ is compatible with Y ⊆ κω if ϕγ [
∏

m∈nγ df0(m)] ⊆ Y .

We use Γ(a,Y ) to denote the family of all configurations which are
compatible with both a and Y .
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V. The sequential G0 dichotomy
The main theorem

Definition

We say that an approximation a is Y -terminal if Γ(b,Y ) = ∅ for all
one-step extensions b of a.

We use T (Y ) to denote the family of all such approximations.

Define A(a,Y ) ⊆ Y by A(a,Y ) = {ϕγ(sna) | γ ∈ Γ(a,Y )}.
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V. The sequential G0 dichotomy
The main theorem

Lemma 46

Suppose that a is an approximation, Y ⊆ κω, and A(a,Y ) is not
(G k)k∈ω-independent. Then a is not Y -terminal.

Proof of Lemma 46

Fix configurations γi ∈ Γ(a,Y ) with (ϕγi (sna))i∈df0(na)
∈ G f0(na).

Fix x ∈ κω such that (x , (ϕγi (sna))i∈df0(na)
) ∈ [if0(na)].
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V. The sequential G0 dichotomy
The main theorem

Proof of Lemma 46 (continued)

Let γ denote the configuration given by:

1 nγ = na + 1.

2 ∀i ∈ df0(na)∀s ∈
∏

m∈na df0(m) (ϕγ(sai) = ϕγi (s)).

3 ∀i ∈ df0(na)∀k ∈ na∀s ∈
∏

m∈na\(k+1) df0(m)

(ψγk (sai) = ψγik (s)).

4 ψγna(∅) = x .
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V. The sequential G0 dichotomy
The main theorem

Proof of Lemma 46 (continued)

Let b denote the approximation given by:

1 nb = nγ .

2 ∀s ∈
∏

m∈na df0(m) (ϕb(s) = ϕγ(s) � nb).

3 ∀k ∈ nb∀s ∈
∏

m∈na\(k+1) df0(m) (ψb
k (s) = ψγk (s) � nb).
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V. The sequential G0 dichotomy
The main theorem

Proof of Lemma 46 (continued)

Clearly γ is compatible with b.

Clearly b is a one-step extension of a.

It follows that a is not Y -terminal.
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V. The sequential G0 dichotomy
The main theorem

Lemma 47

Suppose that a is an approximation, Y ⊆ κω is κ+-Borel, and a is
Y -terminal. Then there is a (G k)k∈ω-independent, κ+-Borel subset
B(a,Y ) of κω such that A(a,Y ) ⊆ B(a,Y ).

Proof of Lemma 47

Lemma 46 ensures that A(a,Y ) is (G k)k∈ω-independent.

The desired result therefore follows from Lemma 33.
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V. The sequential G0 dichotomy
The main theorem

Definition

Set Y ′ = Y \
⋃

a∈T (Y ) B(a,Y ).

Lemma 48

There is a κ+-Borel κ-coloring of G � (Y \ Y ′).

Proof of Lemma 48

Define c(y) = min{a ∈ T (Y ) | y ∈ B(a,Y )} for y ∈ Y \ Y ′.

As c−1({a}) ⊆ B(a,Y ) for all a ∈ T (Y ), it follows that c is a
coloring of G � (Y \ Y ′).
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V. The sequential G0 dichotomy
The main theorem

Definition

Recursively define a sequence (Yα)α∈κ+ of subsets of κω by

Yα =


κω if α = 0,

Y ′β if α = β + 1, and⋂
β∈α Yβ if α is a limit ordinal.

Since there are only κ-many approximations, there exists α ∈ κ+

such that T (Yα) = T (Yα+1).
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V. The sequential G0 dichotomy
The main theorem

Lemma 49

Suppose that the trivial approximation is Yα-terminal. Then there
is a κ+-Borel κ-coloring of (G k)k∈ω.

Proof of Lemma 49

Note first that Yα+1 = ∅, thus κω =
⋃
β≤α Yβ \ Yβ+1.

As all of the sequences (G k)k∈ω � (Yβ \ Yβ+1) admit κ+-Borel
κ-colorings, so too does (G k)k∈ω.
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V. The sequential G0 dichotomy
The main theorem

Lemma 50

Suppose that a is an approximation, Y ⊆ κω is κ+-Borel, and a is
not Y ′-terminal. Then there is a one-step extension of a which is
not Y -terminal.

Proof of Lemma 50

Fix a one-step extension b of a for which Γ(b,Y ′) 6= ∅.

Fix a configuration γ ∈ Γ(b,Y ′).

Then ϕγ(snb) ∈ Y ′, thus b is not Y -terminal.
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V. The sequential G0 dichotomy
The main theorem

Lemma 51

Suppose that the trivial approximation a0 is not Yα-terminal.
Then there is a continuous homomorphism from the sequence
(G k

0 (
∏

n∈ω df0(n)))k∈ω to the sequence (G k)k∈ω.

Proof of Lemma 51

By Lemma 50, there are approximations an = (n, ϕn, (ψk,n)k∈n) that
are not Yα-terminal, and each of which is extended by the next.

Define ϕ :
∏

n∈ω df0(n) → κω and ψk :
∏

n∈ω\(k+1) df0(n) → κω by

ϕ(x) =
⋃
n∈ω

ϕn(x � n) and ψk(x) =
⋃

k∈n∈ω
ψk,n(x � (n − (k + 1))).
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V. The sequential G0 dichotomy
The main theorem

Proof of Lemma 51 (continued)

It remains to show that if k ∈ ω and x ∈
∏

n∈ω\(k+1) df0(n), then

(ψk(x), (ϕ(sk
aiax))i∈df0(k)

) ∈ [if0(k)].

It is enough to show that every open neighborhood U of the pair
(ψk(x), (ϕ(sk

aiax))i∈df0(k)
) contains a point of [if0(k)].
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V. The sequential G0 dichotomy
The main theorem

Proof of Lemma 51 (continued)

Towards this end, fix n ∈ ω sufficiently large that k ∈ n and

Nψk,n(s) ×
∏

i∈df0(k)

Nϕn(skaias) ⊆ U,

where s = x � (n − (k + 1)).

Our choice of an ensures the existence of γ ∈ Γ(an,Yα).

Then (ψγ(s), (ϕγ(sk
aias))i∈df0(k)

) ∈ [if0(k)] ∩ U.
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Part VI

Applications of the sequential G0 dichotomy
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VI. Applications of the sequential G0 dichotomy
The perfect set theorem for sequences of equivalence relations

Theorem 52

Suppose that κ is an aleph, X is a Hausdorff space, and (En)n∈ω is
a sequence of ω-universally Baire, co-κ-Souslin equivalence relations
on X . Then at least one of the following holds:

1 There is a cover of X with κ-many equivalence classes.

2 There is a continuous embedding of ∆(2ω) into
⋃

n∈ω En.

Proof of Theorem 52

Define Gn = (En)c .

If there is a κ-coloring of (Gn)n∈ω, then there is a cover of X with
κ-many equivalence classes.
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VI. Applications of the sequential G0 dichotomy
The perfect set theorem for sequences of equivalence relations

Proof of Theorem 52 (continued)

By Theorem 44, we can assume that there is a continuous homo-
morphism ϕ : 2ω → X from (Gn

0 )n∈ω to (Gn)n∈ω.

Define F n = (ϕ× ϕ)−1(En).

Essentially by Lemma 15, each F n is meager.

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into the
union

⋃
n∈ω F n.

Then ϕ ◦ψ is a continuous embedding of ∆(2ω) into
⋃

n∈ω En.
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VI. Applications of the sequential G0 dichotomy
Bases for vector spaces

Theorem 53

Suppose that κ is an aleph and X is a Hausdorff space equipped with
a vector space structure for which the set D ⊆ X<ω of dependent
sequences is ω-universally Baire and co-κ-Souslin. Then at least one
of the following holds:

1 There is a basis for X of cardinality at most κ.

2 There is a continuous embedding of the set of non-injective
sequences in (2ω)<ω into D.

142 / 213



VI. Applications of the sequential G0 dichotomy
Bases for vector spaces

Proof of Theorem 53

Set Gn = X n+2 \ D.

If there is a κ+-Borel κ-coloring of (Gn)n∈ω, then there is a covering
of X by κ-many finite-dimensional sets, thus there is a basis of
cardinality at most κ.

By Theorem 44, we can assume that there is a continuous homo-
morphism ϕ from (Gn

0 (
∏

n∈ω f0(n) + 2))n∈ω to (Gn)n∈ω.

For each ` ∈ ω, set D` = (ϕ`)−1(D).
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VI. Applications of the sequential G0 dichotomy
Bases for vector spaces

Lemma 54

Suppose that ` ∈ ω \ 1. Then D` is meager.

Proof of Lemma 54

By Kuratowski-Ulam, it is enough to show that if ` ∈ ω \1, x ∈ Dc
` ,

and (D`+1)x has the Baire property, then (D`+1)x is meager.

Suppose that (D`+1)x is non-meager.

Then there exists (xi )i∈`+1 ∈ G `+1
0 (

∏
n∈ω f0(n) + 2) � (D`+1)x .

Then (ϕ(xi ))i∈`+1 /∈ G `+1, a contradiction.
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VI. Applications of the sequential G0 dichotomy
Bases for vector spaces

Proof of Theorem 53 (continued)

By Mycielski, there is continuous embedding ψ of the set of non-
injective sequences in (2ω)<ω into

⋃
`∈ω D`.

Then ϕ ◦ ψ is a continuous embedding of the set of non-injective
sequences in (2ω)<ω into D.
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Theorem 55 (Hjorth)

Suppose that κ is an aleph, X is a Hausdorff space, and G is an
acyclic, κ-Souslin graph on X such that EG \d−1

G (n) is ω-universally
Baire for all n ∈ ω. Then at least one of the following holds:

1 There are κ-many κ+-Borel sets such that every EG -class
intersects one of them in a singleton.

2 There is a continuous embedding of E0 into EG .
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Proof of Theorem 55

We will establish the special case of the theorem for good κ.

Set Gn = EG \ d−1
G (n).

Suppose first that there is a κ+-Borel κ-coloring of (Gn)n∈ω.

Then there is a cover with κ-many κ+-Borel sets of finite diameter.
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Lemma 56

Suppose that B ⊆ X is a κ+-Borel set of diameter strictly less than
2n. Then there are κ+-Borel sets (Bi )i∈n such that every EG -class
which intersects B intersects some Bi in 1 or 2 points.

Proof of Lemma 56

Set B0 = B.

Let Ai+1 denote the domain of the tree obtained by pruning G � Bi .

By Lemma 5, there is a κ+-Borel set Bi+1 ⊆ X of the same diameter
as Ai+1 such that Ai+1 ⊆ Bi+1.
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Proof of Theorem 55 (continued)

The desired covering can therefore be obtained by intersecting with
elements of a basis.

By Theorem 44, we can assume that there is a continuous homo-
morphism ϕ from (Gn

0 )n∈ω to (Gn)n∈ω.
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Lemma 57

Suppose that n ∈ ω. Then d−1
G (n) is meager.

Proof of Lemma 57

By Kuratowski-Ulam, it is enough to show that if d−1
G (n)x has the

Baire property, then it is meager.

Suppose that d−1
G (n)x is non-meager.
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Proof of Lemma 57 (continued)

Then there exists (y , z) ∈ G 2n
0 � d−1

G (n)x .

Then (ϕ(y), ϕ(z)) /∈ G 2n, a contradiction.
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VI. Applications of the sequential G0 dichotomy
Glimm-Effros for treeable equivalence relations

Proof of Theorem 55 (continued)

Set D = (ϕ× ϕ)−1(∆(X )) and F = (ϕ× ϕ)−1(E ).

Then F is a meager equivalence relation which contains E0.

By Lemma 27, there is a continuous embedding ψ of (∆(2ω),E0)
into (D,F ).

Then ϕ ◦ ψ is a continuous embedding of E0 into E .
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Part VII

The local G0 dichotomy
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VII. The local G0 dichotomy
Generalized examples

Example

The digraph on 2ω associated with T ⊆
⋃

n∈ω 2n × 2n is given by

HT = {(t(0)a0ax , t(1)a1ax) | t ∈ T and x ∈ 2ω}.

In particular, if S ⊆ 2<ω, then GS = H∆(S).

Definition

A set T ⊆
⋃

n∈ω 2n × 2n is dense if

∀s ∈ 2<ω × 2<ω∃t ∈ T∀i ∈ 2 (s(i) v t(i)).
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VII. The local G0 dichotomy
Higher-dimensional generic ergodicity

Lemma 58

Suppose that T ⊆
⋃

n∈ω 2n × 2n is dense and R ⊆ 2ω × 2ω is a
transitive set with the Baire property for which HT ⊆ R. Then R is
meager or comeager.

Proof of Lemma 58

Suppose, towards a contradiction, that there exist u, v ∈ 2<ω×2<ω

with R comeager in Nu(1) ×Nv(0) and meager in Nu(0) ×Nv(1).
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VII. The local G0 dichotomy
Higher-dimensional generic ergodicity

Proof of Lemma 58 (continued)

Fix s, t ∈ T such that u(i) v s(i) and v(i) v t(i) for all i ∈ 2.

Then ∀∗x , y ∈ 2ω (s(0)a0axRs(1)a1axRt(0)a0ayRt(1)a1ay).

This contradicts the fact that R is meager in Nu(0) ×Nv(1).
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VII. The local G0 dichotomy
The canonical obstruction

Definition

Fix sequences s2n ∈ 22n and t2n+1 ∈ 22n+1 × 22n+1 such that the
sets S = {s2n | n ∈ ω} and T = {t2n+1 | n ∈ ω} are dense.

Define G even
0 = GS and Hodd

0 = HT .
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VII. The local G0 dichotomy
My, goodness!

Lemma 59

Suppose that κ is a good aleph, X is a Hausdorff space, E is a
weakly κ-Souslin equivalence relation on X , R is a weakly κ-Souslin
quasi-order on X , and (A0,A1) is an (E ∩ R)-independent pair of
weakly κ-Souslin sets. Then there is an (E ∩ R)-independent pair
(B0,B1) of κ+-Borel sets such that A0 ⊆ B0, A1 ⊆ B1, B0 is upward
(E ∩ R)-invariant, and B1 is downward (E ∩ R)-invariant.

Proof of Lemma 59

Set A0,0 = A0 and A1,0 = A1.
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VII. The local G0 dichotomy
My, goodness!

Proof of Lemma 59 (continued)

Given an (E ∩ R)-independent pair (A0,n,A1,n) of weakly κ-Souslin
sets, fix an (E∩R)-independent pair (B0,n,B1,n) of κ+-Borel subsets
of X such that A0,n ⊆ B0,n and A1,n ⊆ B1,n.

Set A0,n+1 = [B0,n]E∩R and A1,n+1 = [B1,n]E∩R .

Define B0 =
⋃

n∈ω B0,n and B1 =
⋃

n∈ω B1,n.
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VII. The local G0 dichotomy
My, goodness!

Lemma 60

Suppose that κ is a good aleph, X is a Hausdorff space, E is a
weakly κ-Souslin equivalence relation on X , R is a weakly bi-κ-
Souslin quasi-order on X , and (A0,A1) is an (E \ R)-independent
pair of weakly κ-Souslin sets. Then there is an (E \R)-independent
pair (B0,B1) of κ+-Borel sets such that A0 ⊆ B0, A1 ⊆ B1, B0 is
downward (E ∩ R)-invariant, and B1 is upward (E ∩ R)-invariant.

Proof of Lemma 60

Set A0,0 = A0 and A1,0 = A1.
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VII. The local G0 dichotomy
My, goodness!

Proof of Lemma 60 (continued)

Given an (E \ R)-independent pair (A0,n,A1,n) of weakly κ-Souslin
sets, fix an (E \R)-independent pair (B0,n,B1,n) of κ+-Borel subsets
of X such that A0,n ⊆ B0,n and A1,n ⊆ B1,n.

Set A0,n+1 = [B0,n]E∩R and A1,n+1 = [B1,n]E∩R .

Define B0 =
⋃

n∈ω B0,n and B1 =
⋃

n∈ω B1,n.
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VII. The local G0 dichotomy
The main theorem

Definition

An equivalence relation E on X is κ-smooth if there is a κ+-Borel
reduction of E to ∆(2κ).
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VII. The local G0 dichotomy
The main theorem

Theorem 61

Suppose that κ is an aleph, X is a Hausdorff space, G is a κ-Souslin
digraph on X , and E is a κ-Souslin equivalence relation on X . Then
at least one of the following holds:

1 There is a κ+-Borel κ-coloring of F ∩ G , for some κ-smooth
equivalence relation F on X with E ⊆ F .

2 There is a continuous homomorphism from (G even
0 ,Hodd

0 ) to
the pair (G ,E ).
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VII. The local G0 dichotomy
The main theorem

Definition

A quasi-order R on X is κ-lexicographically reducible if for some
α ∈ κ+ there is a κ+-Borel reduction of R to Rlex(2α).
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VII. The local G0 dichotomy
The main theorem

Theorem 62

Suppose that κ is an aleph, X is a Hausdorff space, G is a κ-Souslin
digraph on X , and R is a κ-Souslin quasi-order on X . Then at least
one of the following holds:

1 There is a κ+-Borel κ-coloring of ≡S ∩ G , for some κ-lexico-
graphically reducible quasi-order S on X with R ⊆ S .

2 There is a continuous homomorphism from (G even
0 ,Hodd

0 ) to
the pair (G ,R).

Proof of Theorem 62

We will establish the special case of the theorem for good κ.
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VII. The local G0 dichotomy
The main theorem

Lemma 63

It is sufficient to handle the special case that X = κω.

Proof of Lemma 63

We can clearly assume that X 6= ∅, so there is a continuous surjec-
tion ϕ : κω → X .

Set G ′ = (ϕ× ϕ)−1(G ) and R ′ = (ϕ× ϕ)−1(R).
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VII. The local G0 dichotomy
The main theorem

Proof of Lemma 63 (continued)

If there is a κ+-Borel κ-coloring of ≡S ′ ∩ G ′, for some κ-
lexicographically reducible quasi-order S ′ on κω with R ′ ⊆ S ′, then
Lemmas 5 and 59 can be used to produce the desired coloring c and
quasi-order S .

If ψ : 2ω → κω is a continuous homomorphism from (G even
0 ,Hodd

0 )
to (G ′,R ′), then ϕ ◦ ψ is a continuous homomorphism from
(G even

0 ,Hodd
0 ) to (G ,R).
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VII. The local G0 dichotomy
The main theorem

Definition

An approximation is a triple of the form a = (na, ϕa, (ψa
k)k∈na),

where na ∈ ω, ϕa : 2n
a → κn

a
, and ψa

k : 2n
a−(k+1) → κn

a
.

We say that an approximation a is extended by an approximation b
if for all k ∈ na, the following conditions are satisfied:

1 na ≤ nb.

2 ∀r ∈ 2n
a∀s ∈ 2n

b
(r v s =⇒ ϕa(r) v ϕb(s)).

3 ∀r ∈ 2n
a−(k+1)∀s ∈ 2n

b−(k+1) (r v s =⇒ ψa
k(r) v ψb

k (s)).

If nb = na + 1, then we say that b is a one-step extension of a.
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VII. The local G0 dichotomy
The main theorem

Proof of Theorem 62 (continued)

Fix a κ-length well-ordering of the set of all approximations.

Fix trees iG and iR on κ × (κ × κ) such that G = projκω×κω [iG ]
and R = projκω×κω [iR ].
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VII. The local G0 dichotomy
The main theorem

Definition

A configuration is a triple of the form γ = (nγ , ϕγ , (ψγk )k∈nγ ), where
nγ ∈ ω, ϕγ : 2n

γ → κω, and ψγk : 2n
γ−(k+1) → κω, such that

(ψγk (s), (ϕγ(sk
a0as), ϕγ(sk

a1as))) ∈ [iG ]

for all even k ∈ nγ and s ∈ 2n
γ−(k+1), and

(ψγk (s), (ϕγ(tk(0)a0as), ϕγ(tk(1)a1as))) ∈ [iR ]

for all odd k ∈ nγ and s ∈ 2n
γ−(k+1).
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VII. The local G0 dichotomy
The main theorem

Definition

A configuration γ is compatible with an approximation a if:

1 na = nγ .

2 ∀s ∈ 2n
a

(ϕa(s) v ϕγ(s)).

3 ∀k ∈ na∀s ∈ 2n
a−(k+1) (ψa

k(s) v ψγk (s)).

Suppose that Y ⊆ κω is κ+-Borel and S is a κ-lexicographically
reducible quasi-order on κω such that R ⊆ S .

We say that γ is compatible with S if ϕγ [2n
γ

]× ϕγ [2n
γ

] ⊆ S .

We say that γ is compatible with Y if ϕγ [2n
γ

] ⊆ Y .
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VII. The local G0 dichotomy
The main theorem

Definition

We use Γ(a, S ,Y ) to denote the family of all configurations which
are compatible with a, S , and Y .

We say that an approximation a is (S ,Y )-terminal if Γ(b, S ,Y ) = ∅
for all one-step extensions b of a.
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VII. The local G0 dichotomy
The main theorem

Definition

We say that an approximation a is even if na is even.

Let Teven(S ,Y ) be the set of (S ,Y )-terminal even approximations.

For each even approximation a, define A(a, S ,Y ) ⊆ Y by

A(a,S ,Y ) = {ϕγ(sna) | γ ∈ Γ(a,S ,Y )}.
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VII. The local G0 dichotomy
The main theorem

Lemma 64

Suppose that a is an even approximation for which A(a,S ,Y ) is not
(≡S ∩ G )-independent. Then a is not (S ,Y )-terminal.

Proof of Lemma 64

Fix configurations γ0, γ1 ∈ Γ(a,S ,Y ) with the property that

(ϕγ0(sna), ϕγ1(sna)) ∈ ≡S ∩ G .

Fix x ∈ κω such that (x , (ϕγ0(sna), ϕγ1(sna))) ∈ [iG ].
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VII. The local G0 dichotomy
The main theorem

Proof of Lemma 64 (continued)

Let γ denote the configuration given by:

1 nγ = na + 1.

2 ∀i ∈ 2∀s ∈ 2n
a

(ϕγ(sai) = ϕγi (s)).

3 ∀i ∈ 2∀k ∈ na∀s ∈ 2n
a−(k+1) (ψγk (sai) = ψγik (s)).

4 ψγna(∅) = x .

Let b denote the approximation given by:

1 nb = nγ .

2 ∀s ∈ 2n
b

(ϕb(s) = ϕγ(s) � nb).

3 ∀k ∈ nb∀s ∈ 2n
b−(k+1) (ψb

k (s) = ψγk (s) � nb).
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VII. The local G0 dichotomy
The main theorem

Proof of Lemma 64 (continued)

Clearly γ is compatible with b.

Clearly b is a one-step extension of a.

It follows that a is not (S ,Y )-terminal.
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VII. The local G0 dichotomy
The main theorem

Lemma 65

Suppose that a is an even, (S ,Y )-terminal approximation. Then
there is an (≡S ∩ G )-independent, κ+-Borel set B(a, S ,Y ) ⊆ κω

such that A(a,S ,Y ) ⊆ B(a,S ,Y ).

Proof of Lemma 65

Lemma 64 ensures that A(a, S ,Y ) is (≡S ∩ G )-independent.

The desired result therefore follows from Lemma 5.
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VII. The local G0 dichotomy
The main theorem

Definition

Set Y ′ = Y \
⋃

a∈Teven(S,Y ) B(a,S ,Y ).

Lemma 66

There is a κ+-Borel κ-coloring of (≡S ∩ G ) � (Y \ Y ′).

Proof of Lemma 66

Define c(y) = min{a ∈ T(S ,Y ) | y ∈ B(a,S ,Y )} for y ∈ Y \ Y ′.

As c−1({a}) ⊆ B(a,S ,Y ) for all a ∈ T(S ,Y ), it follows that c is a
coloring of (≡S ∩ G ) � (Y \ Y ′).
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VII. The local G0 dichotomy
The main theorem

Definition

We say that an approximation a is odd if na is odd.

Let Todd(S ,Y ) be the set of (S ,Y )-terminal odd approximations.

For each odd approximation a and i ∈ 2, define Ai (a, S ,Y ) ⊆ Y by

Ai (a, S ,Y ) = {ϕγ ◦ tna(i) | γ ∈ Γ(a,S ,Y )}.
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VII. The local G0 dichotomy
The main theorem

Lemma 67

Suppose that a is an odd approximation for which the pair
(A0(a,S ,Y ),A1(a,S ,Y )) is not (≡S ∩ R)-independent. Then a
is not (S ,Y )-terminal.

Proof of Lemma 67

Fix configurations γ0, γ1 ∈ Γ(a,S ,Y ) with the property that

(ϕγ0 ◦ tna(0), ϕγ1 ◦ tna(1)) ∈ ≡S ∩ R.

Fix x ∈ κω such that (x , (ϕγ0 ◦ tna(0), ϕγ1 ◦ tna(1))) ∈ [iR ].
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VII. The local G0 dichotomy
The main theorem

Proof of Lemma 67 (continued)

Let γ denote the configuration given by:

1 nγ = na + 1.

2 ∀i ∈ 2∀s ∈ 2n
a

(ϕγ(sai) = ϕγi (s)).

3 ∀i ∈ 2∀k ∈ na∀s ∈ 2n
a−(k+1) (ψγk (sai) = ψγik (s)).

4 ψγna(∅) = x .

Let b denote the approximation given by:

1 nb = nγ .

2 ∀s ∈ 2n
b

(ϕb(s) = ϕγ(s) � nb).

3 ∀k ∈ nb∀s ∈ 2n
b−(k+1) (ψb

k (s) = ψγk (s) � nb).
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The main theorem

Proof of Lemma 67 (continued)

Clearly γ is compatible with b.

Clearly b is a one-step extension of a.

It follows that a is not (S ,Y )-terminal.
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Lemma 68

Suppose that a is an odd approximation which is (S ,Y )-terminal.
Then there is an (≡S ∩ R)-independent, κ+-Borel pair of sets
(B0(a,S ,Y ),B1(a,S ,Y )) such that A0(a,S ,Y ) ⊆ B0(a,S ,Y ),
A1(a, S ,Y ) ⊆ B1(a,S ,Y ), B0(a,S ,Y ) is upward (≡S ∩ R)-invari-
ant, and B1(a,S ,Y ) is downward (≡S ∩ R)-invariant.

Proof of Lemma 68

Lemma 67 ensures that the pair of sets (A0(a,S ,Y ),A1(a, S ,Y )) is
(≡S ∩ R)-independent.

The desired result therefore follows from Lemma 59.

183 / 213



VII. The local G0 dichotomy
The main theorem

Definition

Let S ′ denote the κ-lexicographically reducible quasi-order generated
by S and the sequence (B0(a, S ,Y ))a∈Todd(S,Y ).

Lemma 69

The quasi-order R is contained in S ′.

Proof of Lemma 69

The main point is that B0(a,S ,Y ) is upward (≡S ∩ R)-invariant.

As R ⊆ S , it follows that R ⊆ S ′.
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The main theorem

Definition

Recursively define a sequence (Sα,Yα)α∈κ+ by κω by

(Sα,Yα) =


(κω × κω, κω) if α = 0,

(S ′β,Y
′
β) if α = β + 1, and

(
⋂
β∈α Sβ,

⋂
β∈α Yβ) if α is a limit ordinal.

Fix α ∈ κ+ such that Teven(Sα,Yα) = Teven(Sα+1,Yα+1) and
Todd(Sα,Yα) = Todd(Sα+1,Yα+1).
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The main theorem

Lemma 70

Suppose that the trivial approximation is (Sα,Yα)-terminal. Then
there is a κ+-Borel κ-coloring of ≡S∩G , for some κ-lexicographically
reducible quasi-order S on X with R ⊆ S .

Proof of Lemma 70

Note first that Yα+1 = ∅, thus κω =
⋃
β≤α Yβ \ Yβ+1.

As all (≡Sα ∩ G ) � (Yβ \ Yβ+1) admit κ+-Borel κ-colorings, so too
does ≡Sα ∩ G .
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The main theorem

Lemma 71

Suppose that a is an approximation which is not (S ′,Y ′)-terminal.
Then there is a one-step extension which is not (S ,Y )-terminal.

Proof of Lemma 71

Suppose first that a is even.

Fix a one-step extension b of a for which Γ(b,S ,Y ′) 6= ∅.

Fix a configuration γ ∈ Γ(b,S ,Y ′).

Then ϕγ(snb) ∈ Y ′, thus b is not (S ,Y )-terminal.
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The main theorem

Proof of Lemma 71 (continued)

Suppose now that a is odd.

Fix a one-step extension b of a for which Γ(b,S ′,Y ) 6= ∅.

Fix a configuration γ ∈ Γ(b,S ′,Y ).

Then ϕγ ◦ tnb(0) ≡S ′ ϕγ ◦ tnb(1), thus b is not (S ,Y )-terminal.
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VII. The local G0 dichotomy
The main theorem

Lemma 72

Suppose that the trivial approximation is not (Sα,Yα)-terminal.
Then there is a continuous homomorphism from (G even

0 ,Hodd
0 ) to

the pair (G ,R).

Proof of Lemma 72

By Lemma 71, there are approximations an = (n, ϕn, (ψk,n)k∈n) that
are not (Sα,Yα)-terminal, each extended by the next.

Define ϕ : 2ω → κω and ψk : 2ω → κω by

ϕ(x) =
⋃
n∈ω

ϕn(x � n) and ψk(x) =
⋃

k∈n∈ω
ψk,n(x � (n − (k + 1))).
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The main theorem

Proof of Lemma 72 (continued)

It remains to show that if k ∈ ω and x ∈ 2ω, then

(ψk(x), (ϕ(sk
a0ax), ϕ(sk

a1ax))) ∈ [iG ]

if k is even, and

(ψk(x), (ϕ(tk(0)a0ax), ϕ(tk(1)a1ax))) ∈ [iR ]

if k is odd.

We will handle the case that k is even, as the other case is identical.
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The main theorem

Proof of Lemma 72 (continued)

It is enough to show that every open neighborhood U of the pair
(ψk(x), (ϕ(sk

a0ax), ϕ(sk
a1ax))) contains a point of [iG ].

Towards this end, fix n ∈ ω sufficiently large that k ∈ n and

Nψk,n(s) × (Nϕn(ska0as) ×Nϕn(ska1as)) ⊆ U,

where s = x � (n − (k + 1)).
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The main theorem

Proof of Lemma 72 (continued)

Our choice of an ensures the existence of γ ∈ Γ(an,Sα,Yα).

Then (ψγ(s), (ϕγ(sk
a0as), ϕγ(sk

a1as))) ∈ [iG ] ∩ U.
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Applications
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VIII. Applications
The characterization of thin quasi-orders

Definition

We say that a quasi-order R is κ-linearizable if it is contained in a
κ-lexicographically reducible quasi-order S for which ≡R = ≡S .
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VIII. Applications
The characterization of thin quasi-orders

Theorem 73 (Harrington-Marker-Shelah)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a
weakly ω-universally Baire, bi-κ-Souslin quasi-order on X . Then at
least one of the following holds:

1 The quasi-order R is κ-linearizable.

2 There is a continuous embedding of ∆(2ω) into R.

Proof of Theorem 73

We will establish the special case of the theorem for good κ.
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VIII. Applications
The characterization of thin quasi-orders

Proof of Theorem 73 (continued)

Set G = Rc .

Suppose first that there is a κ+-Borel κ-coloring c of ≡S ∩ G , for
some κ-lexicographically reducible quasi-order S on X with R ⊆ S .
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VIII. Applications
The characterization of thin quasi-orders

Lemma 74

The quasi-order R is κ-linearizable.

Proof of Lemma 74

By Lemma 60, there are (≡S \ R)-independent pairs (Aα,Bα) of
κ+-Borel sets such that c−1({α}) ⊆ Aα ∩ Bα, Aα is downward
(≡S ∩ R)-invariant, and Bα is upward (≡S ∩ R)-invariant.

Let T denote the κ-lexicographically reducible quasi-order generated
by S and the sequence (Bα)α∈κ.

Then R ⊆ T and ≡R = ≡T , thus R is κ-linearizable.
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VIII. Applications
The characterization of thin quasi-orders

Proof of Theorem 73 (continued)

By Theorem 62, we can therefore assume that there is a continuous
homomorphism ϕ from (G even

0 ,Hodd
0 ) to (G ,R).

Set S = (ϕ× ϕ)−1(R).

Essentially by Lemma 15, the equivalence relation ≡S is meager.

By Lemma 58, the quasi-order S is meager.
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VIII. Applications
The characterization of thin quasi-orders

By Mycielski, there is a continuous embedding ψ of ∆(2ω) into S .

Then ϕ ◦ ψ is a continuous embedding of ∆(2ω) into R.
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VIII. Applications
Glimm-Effros

Theorem 75 (Harrington-Kechris-Louveau, Ditzen, Foreman-Magid-
or)

Suppose that κ is an aleph, X is a Hausdorff space, and E is a
weakly ω-universally Baire, bi-κ-Souslin equivalence relation on X .
Then at least one of the following holds:

1 The equivalence relation E is κ-smooth.

2 There is a continuous embedding of E0 into E .
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VIII. Applications
Glimm-Effros

Proof of Theorem 75

We will establish the special case of the theorem for good κ.

Set G = E c .

Suppose that there is a κ+-Borel κ-coloring c of F ∩ G , for some
κ-smooth equivalence relation F on X with E ⊆ F .

By Lemma 60, we can assume each c−1({α}) is E -invariant.
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VIII. Applications
Glimm-Effros

Then E is the intersection of F with the smooth equivalence relation
generated by c, and is therefore smooth.

By Theorem 61, we can therefore assume that there is a continuous
homomorphism ϕ from (G even

0 ,Hodd
0 ) to (G ,E ).

Set D = (ϕ× ϕ)−1(∆(X )) and F = (ϕ× ϕ)−1(E ).

Essentially by Lemma 15, the equivalence relation F is meager.
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VIII. Applications
Glimm-Effros

Lemma 76

There is a continuous embedding ψ of (∆(2ω),E0) into (D,F ).

Proof of Lemma 76

Fix a decreasing sequence of dense, open sets Un ⊆ Dc such that
F ∩

⋂
n∈ω Un = ∅.

It is enough to construct kn ∈ ω and ui ,n ∈ 2kn such that:

1 ∀n ∈ ω∀s, t ∈ 2n (Nψn+1(sa0) ×Nψn+1(ta1) ⊆ Un).

2 ∀n ∈ ω∃t ∈ T∀i ∈ 2 (t(i)ai = ψn+1(0nai)).

Here ψn : 2n → 2
∑

m∈n km is given by ψn(s) =
⊕

m∈n us(m),m.
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VIII. Applications
Glimm-Effros

Proof of Lemma 76 (continued)

Suppose that we have found km and ui ,m for all i ∈ 2 and m ∈ n.

Fix an enumeration (sk , tk)k≤` of 2n × 2n.

Recursively construct increasing sequences (ui ,k,n)k≤` such that

∀k ≤ ` (Nψn(sk )au0,k,n
×Nψn(tk )au1,k,n

⊆ Un).
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VIII. Applications
Glimm-Effros

Fix extensions ui ,n of ui ,`,n of the same length kn for which there
exists t ∈ T such that t(i)ai = ψn(0n)aui ,n for all i ∈ 2.

Clearly ϕ ◦ ψ is a continuous embedding of E0 into E .
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Definition

Let R0 denote the partial order on 2ω given by

x <R0 y ⇐⇒ (xE0y and x ◦ δ(x , y) < y ◦ δ(x , y)),

where δ(x , y) = max{n ∈ ω | x(n) 6= y(n)}.
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Theorem 77 (Kanovei, Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a
weakly ω-universally Baire, bi-κ-Souslin quasi-order on X . Then at
least one of the following holds:

1 The quasi-order R is κ-linearizable.

2 There is a continuous embedding of E0 or R0 into R.

Proof of Theorem 77

We will establish the special case of the theorem for good κ.
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Proof of Theorem 77 (continued)

Set G = Rc .

By Theorem 62 and Lemma 74, we can assume that there is a
continuous homomorphism ϕ from (G even

0 ,Hodd
0 ) to (G ,R).

Set D = (ϕ× ϕ)−1(2ω) and S = (ϕ× ϕ)−1(R).

Essentially by Lemma 15 and 58, the quasi-order S is meager.
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Lemma 78

There is a continuous homomorphism ψ from (∆(2ω)c ,R0,E
c
0 ) to

the triple (Dc ,S , Sc).

Proof of Lemma 78

Fix a decreasing sequence of dense, open sets Un ⊆ Dc such that
S ∩

⋂
n∈ω Un = ∅.

It is enough to construct kn ∈ ω and ui ,n ∈ 2kn such that:

1 ∀n ∈ ω∀s, t ∈ 2n (Nψn+1(sa0) ×Nψn+1(ta1) ⊆ Un).

2 ∀n ∈ ω∃t ∈ T∀i ∈ 2 (t(i)ai = ψn+1(ina(1− i))).

Here ψn : 2n → 2
∑

m∈n km is given by ψn(s) =
⊕

m∈n us(m),m.
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Proof of Lemma 78 (continued)

Suppose that we have found km and ui ,m for all i ∈ 2 and m ∈ n.

Fix an enumeration (sk , tk)k≤` of 2n × 2n.

Recursively construct increasing sequences (ui ,k,n)k≤` such that

∀k ≤ ` (Nψn(sk )au0,k,n
×Nψn(tk )au1,k,n

⊆ Un).
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Fix extensions ui ,n of ui ,`,n of the same length kn for which there
exists t ∈ T such that t(i)ai = ψn(in)au1−i ,n for all i ∈ 2.

Then the function π = ϕ ◦ ψ is a continuous, injective homomor-
phism from (R0,E

c
0 ) to (R,Rc).
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Proof of Theorem 77 (continued)

Suppose now there are comeagerly many x ∈ 2ω such that

∀y ∈ [x ]E0 (π(x) ≡R π(y)).

As E0 continuously embeds into its restriction to any comeager set,
such a function can be composed with π to obtain a continuous
embedding of E0 into R.
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VIII. Applications
The Glimm-Effros dichotomy for quasi-orders

Proof of Theorem 77 (continued)

Suppose now that there are comeagerly many x ∈ 2ω such that

∃y ∈ [x ]E0 (π(x) 6≡R π(y)).

Let σ denote the successor function for R0.

As every Borel partial transversal of E0 is meager, it follows that the
set C = {x ∈ 2ω | ϕ(x) <R ϕ ◦ σ(x)} is non-meager.

As R0 continuously embeds into its restriction to any non-meager
Borel set, such a function can be composed with π to obtain a
continuous embedding of R0 into R.
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