Descriptive set-theoretic dichotomy theorems

Benjamin D. Miller Universität Münster

Luminy October 4th - 6th, 2010 Within the last few years, it has become clear that many descriptive set-theoretic dichotomy theorems can be seen as consequences of a small handful of graph-theoretic dichotomy theorems.

This has led to classical proofs of many theorems which previously relied on sophisticated machinery from mathematical logic.

Here we give a detailed summary of the new arguments.

Part I

The G_0 dichotomy

Definition

A *digraph* on X is an irreflexive set $G \subseteq X \times X$.

The *restriction* of G to
$$Y \subseteq X$$
 is given by $G \upharpoonright Y = G \cap (Y \times Y)$.

Definition

Suppose that $R \subseteq \prod_{i \in n} X_i$.

A sequence $(Y_i)_{i \in n}$ is *R*-independent if $R \cap \prod_{i \in n} Y_i = \emptyset$.

A set $Y \subseteq X$ is *G*-independent if (Y, Y) is *G*-independent.

Definition

An (*I*-)*coloring* of *G* is a function $c: X \to I$ with the property that for all $i \in I$, the set $c^{-1}(\{i\})$ is *G*-independent.

A homomorphism from $R \subseteq X \times X$ to $S \subseteq Y \times Y$ is a function $\varphi: X \to Y$ which sends *R*-related points to *S*-related points.

A homomorphism from $(R_i)_{i \in I}$ to $(S_i)_{i \in I}$ is a function which is a homomorphism from R_i to S_i for all $i \in I$.

A reduction from $R \subseteq X \times X$ to $S \subseteq Y \times Y$ is a homomorphism from (R, R^c) to (S, S^c) . An embedding is an injective reduction.

Example

The digraph on 2^{ω} associated with $S \subseteq 2^{<\omega}$ is given by

$$\mathcal{G}_{\mathcal{S}} = \{ (s^{\frown}0^{\frown}x, s^{\frown}1^{\frown}x) \mid s \in \mathcal{S} \text{ and } x \in 2^{\omega} \}.$$

Definition

A set
$$S \subseteq 2^{<\omega}$$
 is *dense* if $\forall r \in 2^{<\omega} \exists s \in S \ (r \sqsubseteq s)$.

Lemma 1

Suppose that $B \subseteq 2^{\omega}$ is a non-meager set with the Baire property and $S \subseteq 2^{<\omega}$ is dense. Then B is not G_S -independent.

Proof of Lemma 1

Fix $r \in 2^{<\omega}$ such that B is comeager in \mathcal{N}_r .

Fix $s \in S$ such that $r \sqsubseteq s$.

Then $(s^0^x, s^1^x) \in G_S \upharpoonright B$ for comeagerly many $x \in 2^{\omega}$.

I. The G_0 dichotomy Digraphs without measurable colorings

Lemma 2

Suppose that κ is an aleph, $S \subseteq 2^{<\omega}$ is dense, and c is a κ -coloring of G_S . Then $(c \times c)^{-1}(\leq)$ does not have the Baire property.

Proof of Lemma 2

Set
$$R = (c \times c)^{-1} (\leq)$$
 and $E = (c \times c)^{-1} (\Delta(\kappa))$.

Proof of Lemma 2 (continued)

If *R* has the Baire property, then Kuratowski-Ulam yields a least $\alpha \in \kappa$ for which $c^{-1}(\leq^{\alpha})$ is non-meager and has the Baire property.

Then the *E*-class $C = c^{-1}(\{\alpha\})$ is non-meager.

By Lemma 1, there exists $(x, y) \in G_S \upharpoonright C$, a contradiction.

 \boxtimes

I. The G_0 dichotomy Digraphs without measurable colorings

Lemma 3

Suppose that κ is an aleph, $S \subseteq 2^{<\omega}$ is dense, and the family of subsets of 2^{ω} with the Baire property is closed under κ -length unions. Then there is no κ -coloring of G_S with respect to which pre-images of singletons have the Baire property.

Proof of Lemma 3

Suppose that c is a κ -coloring of G_S with respect to which preimages of singletons have the Baire property.

Then $(c \times c)^{-1} (\leq)$ has the Baire property.

But this directly contradicts Lemma 2.

I. The G_0 dichotomy The canonical obstruction

Definition (Kechris-Solecki-Todorcevic)

Fix sequences $s_n \in 2^n$ such that the set $S = \{s_n \mid n \in \omega\}$ is dense.

Define
$$G_0 = G_0(2^{\omega}) = G_S$$
.

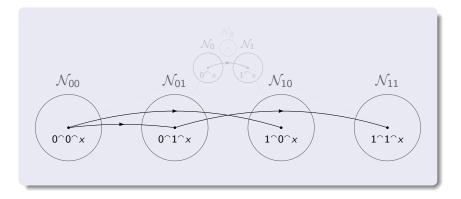
Alternatively, let $G_0(2^n)$ be the digraph on 2^n given recursively by

$$G_0(2^{n+1}) = (G_0(2^n) \otimes 2) \cup \{(s_n^{-}0, s_n^{-}1)\},\$$

where $G_0(2^n) \otimes 2 = \{(s^{-}i, t^{-}i) \mid i \in 2 \text{ and } (s, t) \in G_0(2^n)\}$. Then

$$G_0(2^\omega) = \bigcup_{n \in \omega} \{ (s^\frown x, t^\frown x) \mid (s, t) \in G_0(2^n) \text{ and } x \in 2^\omega \}.$$

I. The G_0 dichotomy The canonical obstruction



Definition

A set $A \subseteq X$ is *weakly* κ -Souslin if it is the continuous image of a κ^+ -Borel subset of κ^{ω} .

Definition

For the purposes of these talks, we will say that an aleph κ is *good* if any two disjoint weakly κ -Souslin subsets of a Hausdorff space can be separated by a κ^+ -Borel set.

Our arguments in the classical case $\kappa=\omega$ generalize word-for-word to the case of good alephs.

In order to obtain generalizations to odd projective pointclasses under AD, one must work with a different notion.

Definition

For the purposes of these talks, we will say that an aleph κ is *nice* if any two disjoint weakly ($< \kappa$)-Souslin subsets of a Hausdorff space can be separated by a κ -Borel set.

Question

Does ZF imply that all alephs are nice?

I. The G_0 dichotomy My, goodness!

Lemma 4

Suppose that κ is a good aleph, $n \in \omega$, $(X_i)_{i \in n}$ is a sequence of Hausdorff spaces, $R \subseteq \prod_{i \in n} X_i$ is weakly κ -Souslin, and $(A_i)_{i \in n}$ is an *R*-independent sequence of weakly κ -Souslin sets. Then there is an *R*-independent sequence $(B_i)_{i \in n}$ of κ^+ -Borel sets such that $A_i \subseteq B_i$ for all $i \in n$.

Proof of Lemma 4

We will recursively construct κ^+ -Borel sets $B_i \subseteq X_i$ such that $(B_i)_{i \in m} (A_i)_{i \in n \setminus m}$ is *R*-independent for all $m \in n$.

Suppose that $m \in n$ and we have already found $(B_i)_{i \in m}$.

I. The G_0 dichotomy My, goodness!

Proof of Lemma 4 (continued)

Set
$$P_m = \prod_{i \in m} B_i \times X_m \times \prod_{i \in n \setminus (m+1)} A_i$$
.

Set
$$Q_m = \prod_{i \in m} B_i \times \operatorname{proj}_{X_m}(R) \times \prod_{i \in n \setminus (m+1)} A_i$$
.

Define
$$A'_m = \operatorname{proj}_{X_m}(R \cap P_m) = \operatorname{proj}_{X_m}(R \cap Q_m).$$

Then $A_m \cap A'_m = \emptyset$ and both of these sets are weakly κ -Souslin.

Fix a
$$\kappa^+$$
-Borel set $B_m \subseteq X_m$ separating A_m from A'_m .

 \square

Lemma 5

Suppose that κ is a good aleph, X is a Hausdorff space, G is a weakly κ -Souslin digraph on X, and $A \subseteq X$ is G-independent and weakly κ -Souslin. Then there is a G-independent, κ^+ -Borel set $B \subseteq X$ such that $A \subseteq B$.

Proof of Lemma 5

By Lemma 4, there is a G-independent pair (B_0, B_1) of κ^+ -Borel subsets of X such that $A \subseteq B_0$ and $A \subseteq B_1$.

Clearly the set $B = B_0 \cap B_1$ is as desired.

Theorem 6 (Kanovei, Kechris-Solecki-Todorcevic, Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, and G is a κ -Souslin digraph on X. Then at least one of the following holds:

- **1** There is a κ^+ -Borel κ -coloring of *G*.
- **2** There is a continuous homomorphism from G_0 to G.

Proof of Theorem 6

We will prove the special case of the theorem for good κ .

Before discussing the proof, we first note a standard reduction.

Lemma 7

It is sufficient to handle the special case that $X = \kappa^{\omega}$.

Proof of Lemma 7

We can clearly assume that $G \neq \emptyset$, so $\operatorname{proj}_X(G) \neq \emptyset$, thus there is a continuous surjection $\varphi \colon \kappa^{\omega} \to \operatorname{proj}_X(G)$. Set $H = (\varphi \times \varphi)^{-1}(G)$.

If there is a κ^+ -Borel κ -coloring of H, then Lemma 5 allows us to produce a κ^+ -Borel κ -coloring of G.

If $\psi: 2^{\omega} \to \kappa^{\omega}$ is a continuous homomorphism from G_0 to H, then $\varphi \circ \psi$ is a continuous homomorphism from G_0 to G.

The idea behind the proof

We will try to build a continuous homomorphism φ from G_0 to G.

Fix a tree \mathfrak{F} on $\kappa \times (\kappa \times \kappa)$ such that $G = \operatorname{proj}_{\kappa^{\omega} \times \kappa^{\omega}}[\mathfrak{F}]$.

When successful, our strategy will also produce continuous functions $\psi_k: 2^\omega \to \kappa^\omega$ verifying our success, in the sense that

 $(\psi_k(x),(\varphi(s_k^{-}0^{-}x),\varphi(s_k^{-}1^{-}x))) \in [*]$

for all $k \in \omega$ and $x \in 2^{\omega}$.

I. The G_0 dichotomy The main theorem

The idea behind the proof (continued)

The functions φ and ψ_k will be of the form

$$\varphi(x) = \bigcup_{n \in \omega} \varphi_n(x \upharpoonright n)$$

and

$$\psi_k(x) = \bigcup_{k \in n \in \omega} \psi_{k,n}(x \upharpoonright (n - (k+1))),$$

where $\varphi_n: 2^n \to \kappa^n$ and $\psi_{k,n}: 2^{n-(k+1)} \to \kappa^n$ for $k \in n \in \omega$, and $(\varphi_n)_{n \in \omega}$ and $(\psi_{k,n})_{n \in \omega}$ are increasing.

The idea behind the proof (continued)

There are of course many possible choices of $(\varphi_n, (\psi_{k,n})_{k \in n})$.

We will consider only those which are restrictions of homomorphisms $\varphi'_n: 2^n \to \kappa^{\omega}$ from $G_0(2^n)$ to G and verifiers $\psi'_{k,n}: 2^{n-(k+1)} \to \kappa^{\omega}$.

The inability to extend such a $(\varphi_n, (\psi_{k,n})_{k \in n})$ to another such pair $(\varphi_{n+1}, (\psi_{k,n+1})_{k \in n+1})$ will yield a *G*-independent, κ^+ -Borel set.

The idea behind the proof (continued)

By removing these sets, we obtain a derivative on κ^{ω} .

If the derivative succeeds in eventually cutting out the entire space before stage κ^+ , then we will have our desired coloring.

Otherwise, we will be able to construct $(\varphi_n, (\psi_{k,n})_{k \in n})$ for $n \in \omega$, and thereby obtain the desired homomorphism.

Definition

An approximation is a triple of the form $a = (n^a, \varphi^a, (\psi^a_k)_{k \in n^a})$, where $n^a \in \omega$, $\varphi^a \colon 2^{n^a} \to \kappa^{n^a}$, and $\psi^a_k \colon 2^{n^a - (k+1)} \to \kappa^{n^a}$.

We say that an approximation *a* is *extended* by an approximation *b* if for all $k \in n^a$, the following conditions are satisfied:

Fix a κ -length well-ordering of the set of all approximations.

Definition

A configuration is a triple of the form $\gamma = (n^{\gamma}, \varphi^{\gamma}, (\psi_k^{\gamma})_{k \in n^{\gamma}})$, where $n^{\gamma} \in \omega, \ \varphi^{\gamma} \colon 2^{n^{\gamma}} \to \kappa^{\omega}$, and $\psi_k^{\gamma} \colon 2^{n^{\gamma} - (k+1)} \to \kappa^{\omega}$, such that $(\psi_k^{\gamma}(s), (\varphi^{\gamma}(s_k^{\gamma} 0^{\gamma} s), \varphi^{\gamma}(s_k^{\gamma} 1^{\gamma} s))) \in [*]$ for all $k \in n^{\gamma}$ and $s \in 2^{n^{\gamma} - (k+1)}$.

This simply says that φ^{γ} is a homomorphism from $G_0(2^{n^{\gamma}})$ to G, and moreover, that this fact is verified by $(\psi_k^{\gamma})_{k \in n^{\gamma}}$.

Definition

We say that a configuration γ is *compatible* with an approximation *a* if the following conditions are satisfied:

We say that γ is *compatible* with a set $Y \subseteq \kappa^{\omega}$ if $\varphi^{\gamma}[2^{n^{\gamma}}] \subseteq Y$.

We use $\Gamma(a, Y)$ to denote the family of all configurations which are compatible with both *a* and *Y*.

Definition

We say that an approximation *a* is *Y*-terminal if $\Gamma(b, Y) = \emptyset$ for all one-step extensions *b* of *a*.

We use T(Y) to denote the family of all such approximations.

Define $A(a, Y) \subseteq Y$ by $A(a, Y) = \{\varphi^{\gamma}(s_{n^a}) \mid \gamma \in \Gamma(a, Y)\}.$

Lemma 8

Suppose that a is an approximation, $Y \subseteq \kappa^{\omega}$, and A(a, Y) is not G-independent. Then a is not Y-terminal.

Proof of Lemma 8

Fix configurations $\gamma_0, \gamma_1 \in \Gamma(a, Y)$ with $(\varphi^{\gamma_0}(s_{n^a}), \varphi^{\gamma_1}(s_{n^a})) \in G$.

Fix $x \in \kappa^{\omega}$ such that $(x, (\varphi^{\gamma_0}(s_{n^a}), \varphi^{\gamma_1}(s_{n^a}))) \in [*].$

Proof of Lemma 8 (continued)

Let γ denote the configuration given by:

1
$$n^{\gamma} = n^{a} + 1.$$

$$2 \quad \forall i \in 2 \forall s \in 2^{n^a} \ (\varphi^{\gamma}(s^{\frown}i) = \varphi^{\gamma_i}(s)).$$

$$\Psi_{n^a}^{\gamma}(\emptyset) = x.$$

Let b denote the approximation given by:

Proof of Lemma 8 (continued)

Clearly γ is compatible with *b*.

Clearly b is a one-step extension of a.

It follows that *a* is not *Y*-terminal.

 \square

Lemma 9

Suppose that *a* is an approximation, $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel, and *a* is Y-terminal. Then there is a *G*-independent, κ^+ -Borel subset B(a, Y) of κ^{ω} such that $A(a, Y) \subseteq B(a, Y)$.

Proof of Lemma 9

Lemma 8 ensures that A(a, Y) is G-independent.

The desired result therefore follows from Lemma 5.

Definition

Set
$$Y' = Y \setminus \bigcup_{a \in T(Y)} B(a, Y)$$
.

Lemma 10

There is a κ^+ -Borel κ -coloring of $G \upharpoonright (Y \setminus Y')$.

Proof of Lemma 10

Define $c(y) = \min\{a \in T(Y) \mid y \in B(a, Y)\}$ for $y \in Y \setminus Y'$.

As $c^{-1}(\{a\}) \subseteq B(a, Y)$ for all $a \in T(Y)$, it follows that c is a coloring of $G \upharpoonright (Y \setminus Y')$.

Definition

Recursively define a sequence $(Y_{lpha})_{lpha\in\kappa^+}$ of subsets of κ^ω by

$$Y_{\alpha} = \begin{cases} \kappa^{\omega} & \text{if } \alpha = 0, \\ Y'_{\beta} & \text{if } \alpha = \beta + 1, \text{ and} \\ \bigcap_{\beta \in \alpha} Y_{\beta} & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

Since there are only κ -many approximations, there exists $\alpha \in \kappa^+$ such that $T(Y_{\alpha}) = T(Y_{\alpha+1})$.

Lemma 11

Suppose that the trivial approximation is Y_{α} -terminal. Then there is a κ^+ -Borel κ -coloring of G.

Proof of Lemma 11

Note first that $Y_{\alpha+1} = \emptyset$, thus $\kappa^{\omega} = \bigcup_{\beta < \alpha} Y_{\beta} \setminus Y_{\beta+1}$.

As all $G \upharpoonright (Y_{\beta} \setminus Y_{\beta+1})$ admit κ^+ -Borel κ -colorings, so does G.

Lemma 12

Suppose that *a* is an approximation, $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel, and *a* is not Y'-terminal. Then there is a one-step extension of *a* which is not Y-terminal.

Proof of Lemma 12

Fix a one-step extension b of a for which $\Gamma(b, Y') \neq \emptyset$.

Fix a configuration $\gamma \in \Gamma(b, Y')$.

Then $\varphi^{\gamma}(s_{n^b}) \in Y'$, thus b is not Y-terminal.

I. The G_0 dichotomy

Lemma 13

Suppose that the trivial approximation is not Y_{α} -terminal. Then there is a continuous homomorphism from G_0 to G.

Proof of Lemma 13

By Lemma 12, there are approximations $a_n = (n, \varphi_n, (\psi_{k,n})_{k \in n})$ that are not Y_{α} -terminal, and each of which is extended by the next.

As promised earlier, we define $\varphi \colon 2^{\omega} \to \kappa^{\omega}$ and $\psi_k \colon 2^{\omega} \to \kappa^{\omega}$ by $\varphi(x) = \bigcup_{n \in \omega} \varphi_n(x \upharpoonright n)$ and $\psi_k(x) = \bigcup_{k \in n \in \omega} \psi_{k,n}(x \upharpoonright (n - (k + 1))).$

I. The G_0 dichotomy The main theorem

Proof of Lemma 13 (continued)

It remains to show that if $k \in \omega$ and $x \in 2^{\omega}$, then

$$(\psi_k(x),(\varphi(s_k^{-}0^{-}x),\varphi(s_k^{-}1^{-}x)))\in [*].$$

It is enough to show that every open neighborhood U of the pair $(\psi_k(x), (\varphi(s_k^{-}0^{-}x), \varphi(s_k^{-}1^{-}x)))$ contains a point of [*].

Towards this end, fix $n \in \omega$ sufficiently large that $k \in n$ and

$$\mathcal{N}_{\psi_{k,n}(s)} \times (\mathcal{N}_{\varphi_n(s_k \cap 0 \cap s)} \times \mathcal{N}_{\varphi_n(s_k \cap 1 \cap s)}) \subseteq U,$$

where $s = x \upharpoonright (n - (k + 1))$.

I. The G_0 dichotomy

Proof of Lemma 13 (continued)

Our choice of a_n ensures the existence of $\gamma \in \Gamma(a_n, Y_\alpha)$.

Then
$$(\psi^{\gamma}(s), (\varphi^{\gamma}(s_k^{\circ}0^{\circ}s), \varphi^{\gamma}(s_k^{\circ}1^{\circ}s))) \in [*] \cap U.$$
 \boxtimes \boxtimes

Part II

Applications of the G_0 dichotomy

Theorem 14 (Mansfield, Souslin)

Suppose that κ is an aleph, X is a Hausdorff space, and $A \subseteq X$ is κ -Souslin. Then at least one of the following holds:

1 The cardinality of A is at most κ .

2 There is a continuous injection of 2^{ω} into *A*.

Proof of Theorem 14

Define $G = \Delta(A)^c$.

If there is a κ -coloring of G, then the cardinality of A is at most κ .

II. Applications of the G_0 dichotomy The perfect set theorem

Proof of Theorem 14 (continued)

By Theorem 6, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to A$ from G_0 to G.

Define
$$E = (\varphi \times \varphi)^{-1}(\Delta(A))$$
.

Then *E* is an equivalence relation on 2^{ω} with the Baire property which is disjoint from G_0 .

Lemma 15

The equivalence relation E is meager.

Proof of Lemma 15

By Kuratowski-Ulam, it is enough to show each *E*-class is meager.

Suppose that C is a non-meager E-class.

By Lemma 1, there exists $(x, y) \in G_0 \upharpoonright C$.

But this contradicts the fact that E is disjoint from G_0 .

II. Applications of the G_0 dichotomy The perfect set theorem

Proof of Theorem 14 (continued)

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into E.

It follows that $\varphi \circ \psi$ is a continuous injection of 2^{ω} into A.

Theorem 16 (Feng)

Suppose that κ is an aleph, X is a κ -Souslin Hausdorff space, and G is an open graph on X. Then at least one of the following holds:

- **①** There is a κ^+ -Borel κ -coloring of G.
- 2 There is a continuous embedding of $\Delta(2^{\omega})$ into G^{c} .

Proof of Theorem 16

By Theorem 6, we can assume there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from G_0 to G.

II. Applications of the G_0 dichotomy Colorings of open graphs

Proof of Theorem 16 (continued)

Define $H = (\varphi \times \varphi)^{-1}(G)$.

Then H is an open graph intersecting all non-empty open squares.

II. Applications of the G_0 dichotomy Colorings of open graphs

Lemma 17

There is a continuous embedding ψ of $\Delta(2^{\omega})$ into H^c .

Proof of Lemma 17

We will find a strictly increasing sequence of natural numbers k_n and an increasing sequence of functions $\psi_n: 2^n \to 2^{k_n}$ such that

$$orall n \in \omega orall s, t \in 2^n \ (s
eq t \implies \mathcal{N}_{\psi_n(s)} imes \mathcal{N}_{\psi_n(t)} \subseteq H).$$

Suppose that we have already found ψ_n .

II. Applications of the G_0 dichotomy Colorings of open graphs

Proof of Lemma 17 (continued)

For each $s \in 2^n$, fix $(x_s, y_s) \in H \upharpoonright \mathcal{N}_{\psi_n(s)}$.

Fix
$$k_{n+1} > k_n$$
 such that $\mathcal{N}_{x_s \upharpoonright k_{n+1}} \times \mathcal{N}_{y_s \upharpoonright k_{n+1}} \subseteq H$ for all $s \in 2^n$.

Define $\psi_{n+1}(s) = x_s \upharpoonright k_{n+1}$.

Clearly $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into G^{c} .

 \boxtimes

II. Applications of the G_0 dichotomy Uniformization of sets with thin sections

Theorem 18 (Lusin-Novikov)

Suppose that κ is an aleph, X and Y are Hausdorff spaces, and $R \subseteq X \times Y$ is κ -Souslin. Then at least one of the following holds:

- The set *R* is the union of κ -many relatively κ^+ -Borel graphs of partial functions.
- 2 There is a continuous injection of 2^{ω} into some vertical section of R.

Proof of Theorem 18

Define $G = \{((x_0, y_0), (x_1, y_1)) \in R \times R \mid x_0 = x_1 \text{ and } y_0 \neq y_1\}.$

If there is a κ^+ -Borel κ -coloring of G, then R is the union of κ -many relatively κ^+ -Borel graphs of partial functions.

II. Applications of the G_0 dichotomy Uniformization of sets with thin sections

Proof of Theorem 18 (continued)

By Theorem 6, we can assume there is a continuous homomorphism $\varphi: 2^{\omega} \to R$ from G_0 to G.

Set
$$\varphi_X = \operatorname{proj}_X \circ \varphi$$
 and $\varphi_Y = \operatorname{proj}_Y \circ \varphi$.

Then φ_X is a continuous homomorphism from E_0 to $\Delta(X)$.

Let x denote the constant value of φ_X .

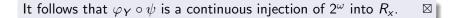
II. Applications of the G_0 dichotomy Uniformization of sets with thin sections

Pr	oof	of	Theorem	18	(c	ontinued)
_		_	,			1 (. (

Define $E = (\varphi_Y \times \varphi_Y)^{-1}(\Delta(Y)).$

By Lemma 15, the equivalence relation E is meager.

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into E.



II. Applications of the G_0 dichotomy Universally Baire sets

Definition

A set $B \subseteq X$ is ω -universally Baire if for every continuous function $\varphi \colon \omega^{\omega} \to X$, the set $\varphi^{-1}(B)$ has the Baire property.

Definition

A set $B \subseteq X$ is weakly ω -universally Baire if for every continuous function $\varphi: 2^{\omega} \to X$, the set $\varphi^{-1}(B)$ has the Baire property.

Question

Does ZFC imply that there is a weakly ω -universally Baire set which is not ω -universally Baire?

Theorem 19 (Silver, Harrington-Shelah)

Suppose that κ is an aleph, X is a Hausdorff space, and E is a weakly ω -universally Baire, co- κ -Souslin equivalence relation on X. Then at least one of the following holds:

- **1** The equivalence relation E has at most κ -many classes.
- **2** There is a continuous embedding of $\Delta(2^{\omega})$ into *E*.

Proof of Theorem 19

Define $G = E^c$.

If there is a κ -coloring of G, then E has at most κ -many classes.

The perfect set theorem for equivalence relations

Proof of Theorem 19 (continued)

By Theorem 6, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from G_0 to G.

Define $F = (\varphi \times \varphi)^{-1}(E)$.

By Lemma 15, the equivalence relation F is meager.

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into F.

Then $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into *E*.

Theorem 20 (Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a weakly ω -universally Baire, co- κ -Souslin quasi-order on X. Then at least one of the following holds:

- **1** The equivalence relation \equiv_R has at most κ -many classes.
- **2** There is a continuous embedding of $\Delta(2^{\omega})$ or $R_{lex}(2^{\omega})$ into R.

Proof of Theorem 20

Define $G = R^c$.

If there is a κ -coloring of G, then \equiv_R has at most κ -many classes.

The perfect set theorem for quasi-orders

Proof of Theorem 20 (continued)

By Theorem 6, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from G_0 to G.

Define $S = (\varphi \times \varphi)^{-1}(R)$.

If there is a non-empty open square in which S is meager, then Mycielski yields a continuous embedding ψ of $\Delta(2^{\omega})$ into S.

Then $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into *R*.

The perfect set theorem for quasi-orders

Proof of Theorem 20 (continued)

So suppose that S is non-meager in every non-empty, open square.

By Lemma 15, the equivalence relation \equiv_S is meager.

The perfect set theorem for quasi-orders

Lemma 21

There is a continuous embedding ψ of $R_{\text{lex}}(2^{\omega})$ into S.

Proof of Lemma 21

We will find a strictly increasing sequence of natural numbers k_n , an increasing sequence of functions $\psi_n \colon 2^n \to 2^{k_n}$, extensions $u_{s,i}$ of $\psi_n(s)$, and decreasing sequences $(U_{m,s})_{m \in \omega}$ of dense, open subsets of $\mathcal{N}_{u_{s,0}} \times \mathcal{N}_{u_{s,1}}$ with $\bigcap_{m \in \omega} U_{m,s} \subseteq \langle s \rangle$, such that

$$\mathcal{N}_{\psi_n(r^{\frown}0^{\frown}s)} imes \mathcal{N}_{\psi_n(r^{\frown}1^{\frown}t)} \subseteq U_{n,r}$$

for all $m \in n \in \omega$, $r \in 2^m$, and $s, t \in 2^{n-(m+1)}$.

The perfect set theorem for quasi-orders

Suppose that we have already found ψ_n , as well as u_s , v_s , and $(U_{m,s})_{m\in\omega}$ for all $s \in 2^{\leq n}$.

For each $s \in 2^n$, fix extensions $u_{s,i}$ of $\psi_n(s)$ such that $<_S$ is comeager in $\mathcal{N}_{u_s} \times \mathcal{N}_{v_s}$, as well as decreasing sequences $(U_{m,s})_{m \in \omega}$ of dense, open subsets of $\mathcal{N}_{u_s} \times \mathcal{N}_{v_s}$ with $\bigcap_{m \in \omega} U_{m,s} \subseteq <_S$.

Define $\psi'_{n+1}: 2^{n+1} \to 2^{<\omega}$ by $\psi'_{n+1}(s^{-}i) = u_{s,i}$.

II. Applications of the G_0 dichotomy The perfect set theorem for guasi-orders

Obtain ψ_{n+1} by fixing an enumeration of the pairs of length n of the form $(r^{0}s, r^{1}t)$, and recursively extending $\psi'_{n+1}(r^{0}s)$ and $\psi'_{n+1}(r^{1}t)$ so that $\mathcal{N}_{\psi_{n+1}(r^{0}s)} \times \mathcal{N}_{\psi_{n+1}(r^{1}t)} \subseteq U_{n,r}$.

Cleary $\varphi \circ \psi$ is a continuous embedding of $R_{\text{lex}}(2^{\omega})$ into R.

 \boxtimes

Theorem 22 (Friedman-Shelah)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a linear, weakly ω -universally Baire, co- κ -Souslin quasi-order on X. Then at least one of the following holds:

- **1** There is an *R*-dense set of cardinality κ .
- There is a continuous embedding of 2^ω into a pairwise disjoint set of non-empty, open *R*-intervals.

Proof of Theorem 22

Set $I = \{(x, y) \in X \times X \mid (x, y)_R \neq \emptyset\}.$

Define $G = \{((x_0, y_0), (x_1, y_1)) \in I \times I \mid [x_0, y_0]_R \cap [x_1, y_1]_R = \emptyset\}.$

The perfect set theorem for linear quasi-orders

Proof of Theorem 22 (continued)

If there is a κ -coloring of G, then the family of all closed R-intervals with non-empty interiors can be written as the union of κ -many intersecting families.

Under AC_{κ}, this is easily seen to be equivalent to the existence of an *R*-dense set of cardinality κ .

The perfect set theorem for linear quasi-orders

Proof of Theorem 22 (continued)

By Theorem 6, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to I$ from G_0 to G.

Define $H = (\varphi \times \varphi)^{-1}(G)$.

The perfect set theorem for linear quasi-orders

Lemma 23

The relation H^c is meager.

Proof of Lemma 23

Note first that $H^c = \bigcup_{i,j \in 2} H_{ij}$, where

 $H_{ij} = \{(x_0, x_1) \in 2^{\omega} \times 2^{\omega} \mid \varphi_i(x_j) \in [\varphi_0(x_{1-j}), \varphi_1(x_{1-j})]_R\}.$

By symmetry, it is sufficient to show that H_{00} is meager.

By Kuratowski-Ulam, it is enough to show that if $(H_{00})_{x_0}$ has the Baire property, then it is meager.

The perfect set theorem for linear quasi-orders

Proof of Lemma 23 (continued)

If it is non-meager, then Lemma 1 yields $(x_1, x_2) \in G_0 \upharpoonright (H_{00})_{x_0}$.

Then $(\varphi(x_1), \varphi(x_2)) \notin G$, a contradiction.

 \boxtimes

The perfect set theorem for linear quasi-orders

Proof of Theorem 22 (continued)

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into H^{c} .

Then $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into G^{c} .

Theorem 24 (Friedman-Harrington-Kechris)

Suppose that κ is an aleph, X is a Hausdorff space, and d is a quasimetric on X such that for all $\epsilon > 0$, the set $d^{-1}[0, \epsilon)$ is ω -universally Baire and co- κ -Souslin. Then one of the following holds:

- **1** There is a *d*-dense set of cardinality at most κ .
- 2 There is a continuous embedding of Δ(2^ω) into d⁻¹[0, ε), for some ε > 0.

Proof of Theorem 24

For each
$$n \in \omega \setminus \{0\}$$
, define $G_n = d^{-1}[1/n, \infty)$.

The perfect set theorem for quasi-metrics

Proof of Theorem 24 (continued)

If each G_n has a κ -coloring, then there is a basis of size at most κ .

Under AC_{κ} , this is easily seen to be equivalent to the existence of a d-dense set of cardinality at most κ .

The perfect set theorem for quasi-metrics

Proof of Theorem 24 (continued)

By Theorem 6, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from G_0 to some G_n .

Define $e: 2^{\omega} \to \mathbb{R}$ by $e(x, y) = d(\varphi(x), \varphi(y))$.

The perfect set theorem for quasi-metrics

Lemma 25

The set $e^{-1}[0, 1/2n)$ is meager.

Proof of Lemma 25

By Kuratowski-Ulam, it is enough to show that if $\mathcal{B}_e(x, 1/2n)$ has the Baire property, then it is meager.

Suppose that $\mathcal{B}_e(x, 1/2n)$ is non-meager.

By Lemma 1, there exists $(y, z) \in G_0 \upharpoonright \mathcal{B}_e(x, 1/2n)$.

Then e(y, z) < 1/n, thus $(\varphi(y), \varphi(z)) \notin G_n$, a contradiction.

 \boxtimes

The perfect set theorem for quasi-metrics

Proof of Theorem 24 (continued)

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into the relation $e^{-1}[0, 1/2n)$.

It follows that $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into the relation $d^{-1}[0, 1/2n)$.

Theorem 26 (Dougherty-Jackson-Kechris)

Suppose that κ is an aleph, X is a Hausdorff space, and E is a weakly ω -universally Baire, κ -Souslin equivalence relation on X. Then at least one of the following holds:

- **1** There are κ -many κ^+ -Borel partial *E*-transversals covering *X*.
- **2** There is a continuous injection of 2^{ω} into some *E*-class.
- **③** There is a continuous embedding of E_0 into E.

Proof of Theorem 26

Define $G = E \setminus \Delta(X)$.

Proof of Theorem 26 (continued)

If there is a κ^+ -Borel κ -coloring of *G*, then there is a family of κ -many κ^+ -Borel partial transversals of *E* which cover *X*.

By Theorem 6, we can assume there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from G_0 to G.

Define $D = (\varphi \times \varphi)^{-1}(\Delta(X))$.

By Lemma 15, the equivalence relation D is meager.

Proof of Theorem 26 (continued)

If the equivalence relation $F = (\varphi \times \varphi)^{-1}(E)$ is non-meager, then Kuratowski-Ulam yields a non-meager *F*-class *C*.

Mycielski gives a continuous embedding ψ of $\Delta(2^{\omega})$ into $D \upharpoonright C$.

Then $\varphi \circ \psi$ is a continuous injection of 2^{ω} into $\varphi[C]$.

Otherwise, F is a meager equivalence relation containing E_0 .

Lemma 27

There is a continuous embedding ψ of $(\Delta(2^{\omega}), E_0)$ into (D, F).

Proof of Lemma 27

Fix a decreasing sequence of dense, open sets $U_n \subseteq D^c$ such that $F \cap \bigcap_{n \in \omega} U_n = \emptyset$.

It is enough to construct $k_n \in \omega$ and $u_{i,n} \in 2^{k_n}$ such that

$$\forall n \in \omega \forall s, t \in 2^n \ (\mathcal{N}_{\psi_{n+1}(s^{\frown}0)} \times \mathcal{N}_{\psi_{n+1}(t^{\frown}1)} \subseteq U_n),$$

where $\psi_n: 2^n \to 2^{\sum_{m \in n} k_m}$ is given by $\psi_n(s) = \bigoplus_{m \in n} u_{s(m),m}$.

Proof of Lemma 27 (continued)

Suppose that we have found k_m and $u_{i,m}$ for all $i \in 2$ and $m \in n$.

Fix an enumeration $(s_k, t_k)_{k \leq \ell}$ of $2^n \times 2^n$.

Recursively construct increasing sequences $(u_{i,k,n})_{k \leq \ell}$ such that

$$\forall k \leq \ell \ (\mathcal{N}_{\psi_n(s_k) \frown u_{0,k,n}} \times \mathcal{N}_{\psi_n(t_k) \frown u_{1,k,n}} \subseteq U_n).$$

Set
$$u_{i,n} = u_{i,\ell,n}$$
 and $k_n = |u_{0,n}| = |u_{1,n}|$.

Clearly $\varphi \circ \psi$ is a continuous embedding of E_0 into E.

 \bowtie

Definition

Let F_0 denote the equivalence relation on 2^{ω} given by

$$xF_0y \iff (\operatorname{parity}(x \upharpoonright n))_{n \in \omega} E_0(\operatorname{parity}(y \upharpoonright n))_{n \in \omega},$$

where parity(s) = $\sum_{i \in n} s(i) \pmod{2}$ for $n \in \omega$ and $s \in 2^n$.

Theorem 28 (Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, E is a weakly ω -universally Baire, κ -Souslin equivalence relation on X, and F is a weakly ω -universally Baire, co- κ -Souslin equivalence relation on X of index two below E. Then at least one of the following holds:

• There is a cover of X with κ -many κ^+ -Borel partial transversals of E over F.

2 There is a continuous embedding of (E_0, F_0) into (E, F).

Proof of Theorem 28

Define $G = E \setminus F$.

Proof of Theorem 28 (continued)

If there is a κ^+ -Borel κ -coloring of G, then there are κ -many κ^+ -Borel partial transversals of E over F which cover X.

By Theorem 6, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from G_0 to G.

Define
$$E' = (\varphi \times \varphi)^{-1}(E)$$
 and $F' = (\varphi \times \varphi)^{-1}(F)$.

Proof of Theorem 28 (continued)

By Lemma 15, the equivalence relation F' is meager.

Kuratowski-Ulam then implies that E' is meager.

Observe that $F_0 \subseteq F'$ and $E_0 \setminus F_0 \subseteq E' \setminus F'$.

Set $D' = (\varphi \times \varphi)^{-1}(\Delta(X)).$

Lemma 29

There is a continuous embedding ψ of the triple $(\Delta(2^{\omega}), E_0, F_0)$ into the triple (D', E', F').

Proof of Lemma 29

Fix a decreasing sequence of dense, open sets $U_n \subseteq (D')^c$ such that $E' \cap \bigcap_{n \in \omega} U_n = \emptyset$.

We construct $k_n \in \omega$ and $u_{i,n} \in 2^{k_n}$ with differing parities such that

$$\forall n \in \omega \forall s, t \in 2^n \ (\mathcal{N}_{\psi_{n+1}(s \cap 0)} \times \mathcal{N}_{\psi_{n+1}(t \cap 1)} \subseteq U_n),$$

where $\psi_n: 2^n \to 2^{\sum_{m \in n} k_m}$ is given by $\psi_n(s) = \bigoplus_{m \in n} u_{s(m),m}$.

Proof of Lemma 29 (continued)

Suppose that we have found k_m and $u_{i,m}$ for all $i \in 2$ and $m \in n$.

Fix an enumeration $(s_k, t_k)_{k \leq \ell}$ of $2^n \times 2^n$.

Recursively construct increasing sequences $(u_{i,k,n})_{k \leq \ell}$ such that

$$\forall k \leq \ell \ (\mathcal{N}_{\psi_n(s_k) \frown u_{0,k,n}} \times \mathcal{N}_{\psi_n(t_k) \frown u_{1,k,n}} \subseteq U_n).$$

Proof of Lemma 29 (continued)

If $\operatorname{parity}(u_{0,\ell,n}) \neq \operatorname{parity}(u_{1,\ell,n})$, then set $u_{i,n} = u_{i,\ell,n}$.

Otherwise, set $u_{i,n} = u_{i,\ell,n} i$.

Define $k_n = |u_{0,n}| = |u_{1,n}|$.

Clearly $\varphi \circ \psi$ is a continuous embedding of (E_0, F_0) into (E, F).

 \square

Part III

The hypergraph G_0 dichotomy

III. The hypergraph G_0 dichotomy Graph-theoretic definitions

Definition

A ($\leq d$)-dimensional dihypergraph on X is a set $G \subseteq X^d$ of nonconstant sequences.

The *restriction* of G to $Y \subseteq X$ is given by $G \upharpoonright Y = G \cap Y^d$.

A set $Y \subseteq X$ is *G*-independent if $G \upharpoonright Y = \emptyset$.

An (*I*-)*coloring* of *G* is a function $c: X \to I$ with the property that for all $i \in I$, the set $c^{-1}(\{i\})$ is *G*-independent.

III. The hypergraph G_0 dichotomy Graph-theoretic definitions

Example

The dihypergraph on d^{ω} associated with $S \subseteq d^{<\omega}$ is given by

$$G_S = \{(s^{\frown}i^{\frown}x)_{i \in d} \mid s \in S \text{ and } x \in d^{\omega}\}.$$

Definition

A set
$$S \subseteq d^{<\omega}$$
 is dense if $\forall r \in d^{<\omega} \exists s \in S \ (r \sqsubseteq s)$.

III. The hypergraph G_0 dichotomy Dihypergraphs without large independent sets

Lemma 30

Suppose that $d \in \omega \setminus 2$, $B \subseteq d^{\omega}$ is a non-meager set with the Baire property, and $S \subseteq d^{<\omega}$ is dense. Then B is not G_S -independent.

Proof of Lemma 30

Fix $r \in d^{<\omega}$ such that B is comeager in \mathcal{N}_r .

Fix $s \in S$ such that $r \sqsubseteq s$.

Then $(s^{i}x)_{i\in d} \in G_S \upharpoonright B$ for comeagerly many $x \in d^{\omega}$.

III. The hypergraph G_0 dichotomy Dihypergraphs without measurable colorings

Lemma 31

Suppose that $d \in \omega \setminus 2$, κ is an aleph, $S \subseteq d^{<\omega}$ is dense, and c is a κ -coloring of G_S . Then the set $(c \times c)^{-1} (\leq)$ does not have the Baire property.

Proof of Lemma 31

Set
$$R = (c \times c)^{-1} (\leq)$$
 and $E = (c \times c)^{-1} (\Delta(\kappa))$.

III. The hypergraph G_0 dichotomy Dihypergraphs without measurable colorings

Proof of Lemma 31 (continued)

If *R* has the Baire property, then Kuratowski-Ulam yields a least $\alpha \in \kappa$ for which $c^{-1}(\leq^{\alpha})$ is non-meager and has the Baire property.

Then the *E*-class $C = c^{-1}(\{\alpha\})$ is non-meager.

By Lemma 30, there exists $(x_i)_{i \in d} \in G_S \upharpoonright C$, a contradiction.

 $\overline{\mathbf{A}}$

III. The hypergraph G_0 dichotomy

Dihypergraphs without measurable colorings

Lemma 32

Suppose that $d \in \omega \setminus 2$, κ is an aleph, $S \subseteq d^{<\omega}$ is dense, and the family of subsets of d^{ω} with the Baire property is closed under κ -length unions. Then there is no κ -coloring of G_S with respect to which pre-images of singletons have the Baire property.

Proof of Lemma 32

Suppose that c is a κ -coloring of G_S with respect to which preimages of singletons have the Baire property.

Then $(c \times c)^{-1} (\leq)$ has the Baire property.

But this directly contradicts Lemma 31.

III. The hypergraph G_0 dichotomy The canonical obstruction

Definition

Fix sequences $s_n \in d^n$ such that the set $S = \{s_n \mid n \in \omega\}$ is dense.

Define $G_0(d^{\omega}) = G_S$.

III. The hypergraph G_0 dichotomy My, goodness!

Lemma 33

Suppose that $d \in \omega \setminus 2$, κ is a good aleph, X is a Hausdorff space, G is a weakly κ -Souslin, $(\leq d)$ -dimensional dihypergraph on X, and $A \subseteq X$ is G-independent and weakly κ -Souslin. Then there is a G-independent, κ^+ -Borel set $B \subseteq X$ such that $A \subseteq B$.

Proof of Lemma 33

By Lemma 4, there is a *G*-independent sequence $(B_i)_{i \in d}$ of κ^+ -Borel subsets of X such that $A \subseteq B_i$ for all $i \in d$.

Clearly the set $B = \bigcap_{i \in d} B_i$ is as desired.

 \boxtimes

Theorem 34 (Louveau)

Suppose that $d \in \omega \setminus 2$, κ is an aleph, X is a Hausdorff space, and G is a κ -Souslin, $(\leq d)$ -dimensional dihypergraph on X. Then at least one of the following holds:

1 There is a κ^+ -Borel κ -coloring of *G*.

2 There is a continuous homomorphism from $G_0(d^{\omega})$ to G.

Proof of Theorem 34

We will prove the special case of the theorem for good κ .

III. The hypergraph G_0 dichotomy

Lemma 35

It is sufficient to handle the special case that $X = \kappa^{\omega}$.

Proof of Lemma 35

We can clearly assume that $G \neq \emptyset$, so $\operatorname{proj}_X(G) \neq \emptyset$, thus there is a continuous surjection $\varphi \colon \kappa^{\omega} \to \operatorname{proj}_X(G)$. Set $H = (\varphi^d)^{-1}(G)$.

If there is a κ^+ -Borel κ -coloring of H, then Lemma 33 allows us to produce a κ^+ -Borel κ -coloring of G.

If $\psi: d^{\omega} \to \kappa^{\omega}$ is a continuous homomorphism from $G_0(d^{\omega})$ to H, then $\varphi \circ \psi$ is a continuous homomorphism from $G_0(d^{\omega})$ to G.

Definition

An approximation is a triple of the form $a = (n^a, \varphi^a, (\psi^a_k)_{k \in n^a})$, where $n^a \in \omega$, $\varphi^a : d^{n^a} \to \kappa^{n^a}$, and $\psi^a_k : d^{n^a - (k+1)} \to \kappa^{n^a}$.

We say that an approximation a is extended by an approximation b if for all k ∈ n^a, the following conditions are satisfied:
n^a ≤ n^b.
∀r ∈ d^{n^a}∀s ∈ d^{n^b} (r ⊑ s ⇒ φ^a(r) ⊑ φ^b(s)).

$$\exists \forall r \in d^{n^a - (k+1)} \forall s \in d^{n^b - (k+1)} \ (r \sqsubseteq s \implies \psi_k^a(r) \sqsubseteq \psi_k^b(s)).$$

If $n^b = n^a + 1$, then we say that b is a one-step extension of a.

Fix a κ -length well-ordering of the set of all approximations.

Proof of Theorem 34 (continued)

Fix a tree \mathfrak{F} on $\kappa \times \kappa^d$ such that $G = \operatorname{proj}_{(\kappa^{\omega})^d}[\mathfrak{F}].$

Definition

A configuration is a triple of the form $\gamma = (n^{\gamma}, \varphi^{\gamma}, (\psi_{k}^{\gamma})_{k \in n^{\gamma}})$, where $n^{\gamma} \in \omega, \varphi^{\gamma} \colon d^{n^{\gamma}} \to \kappa^{\omega}$, and $\psi_{k}^{\gamma} \colon d^{n^{\gamma}-(k+1)} \to \kappa^{\omega}$, such that $(\psi_{k}^{\gamma}(s), (\varphi^{\gamma}(s_{k} \cap i \cap s))_{i \in d}) \in [*]$

for all $k \in n^{\gamma}$ and $s \in d^{n^{\gamma}-(k+1)}$.

Definition

We say that a configuration γ is *compatible* with an approximation *a* if the following conditions are satisfied:

We say that γ is *compatible* with a set $Y \subseteq \kappa^{\omega}$ if $\varphi^{\gamma}[d^{n^{\gamma}}] \subseteq Y$.

We use $\Gamma(a, Y)$ to denote the family of all configurations which are compatible with both *a* and *Y*.

Definition

We say that an approximation *a* is *Y*-terminal if $\Gamma(b, Y) = \emptyset$ for all one-step extensions *b* of *a*.

We use T(Y) to denote the family of all such approximations.

Define $A(a, Y) \subseteq Y$ by $A(a, Y) = \{\varphi^{\gamma}(s_{n^a}) \mid \gamma \in \Gamma(a, Y)\}.$

Lemma 36

Suppose that a is an approximation, $Y \subseteq \kappa^{\omega}$, and A(a, Y) is not G-independent. Then a is not Y-terminal.

Proof of Lemma 36

Fix configurations $\gamma_i \in \Gamma(a, Y)$ with $(\varphi^{\gamma_i}(s_{n^a}))_{i \in d} \in G$.

Fix $x \in \kappa^{\omega}$ such that $(x, (\varphi^{\gamma_i}(s_{n^a}))_{i \in d}) \in [*]$.

Proof of Lemma 36 (continued)

Let γ denote the configuration given by:

$$\begin{array}{l} \bullet \quad n^{\gamma} = n^{a} + 1. \\ \bullet \quad \forall i \in d \forall s \in d^{n^{a}} \; (\varphi^{\gamma}(s^{\frown}i) = \varphi^{\gamma_{i}}(s)). \\ \bullet \quad \forall i \in d \forall k \in n^{a} \forall s \in d^{n^{a} - (k+1)} \; (\psi^{\gamma}_{k}(s^{\frown}i) = \psi^{\gamma_{i}}_{k}(s)). \\ \bullet \quad \psi^{\gamma}_{n^{a}}(\emptyset) = x. \end{array}$$

Let b denote the approximation given by:
n^b = n^γ.
∀s ∈ d^{n^b} (φ^b(s) = φ^γ(s) ↾ n^b).
∀k ∈ n^b∀s ∈ d^{n^b-(k+1)} (ψ^b_k(s) = ψ^γ_k(s) ↾ n^b).

III. The hypergraph G_0 dichotomy

Proof of Lemma 36 (continued)

Clearly γ is compatible with *b*.

Clearly b is a one-step extension of a.

It follows that *a* is not *Y*-terminal.

 \square

Lemma 37

Suppose that *a* is an approximation, $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel, and *a* is Y-terminal. Then there is a *G*-independent, κ^+ -Borel subset B(a, Y) of κ^{ω} such that $A(a, Y) \subseteq B(a, Y)$.

Proof of Lemma 37

Lemma 36 ensures that A(a, Y) is G-independent.

The desired result therefore follows from Lemma 33.

Definition

Set
$$Y' = Y \setminus \bigcup_{a \in T(Y)} B(a, Y)$$
.

Lemma 38

There is a κ^+ -Borel κ -coloring of $G \upharpoonright (Y \setminus Y')$.

Proof of Lemma 38

Define $c(y) = \min\{a \in T(Y) \mid y \in B(a, Y)\}$ for $y \in Y \setminus Y'$.

As $c^{-1}(\{a\}) \subseteq B(a, Y)$ for all $a \in T(Y)$, it follows that c is a coloring of $G \upharpoonright (Y \setminus Y')$.

Definition

Recursively define a sequence $(Y_{lpha})_{lpha\in\kappa^+}$ of subsets of κ^ω by

$$Y_{\alpha} = \begin{cases} \kappa^{\omega} & \text{if } \alpha = 0, \\ Y'_{\beta} & \text{if } \alpha = \beta + 1, \text{ and} \\ \bigcap_{\beta \in \alpha} Y_{\beta} & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

Since there are only κ -many approximations, there exists $\alpha \in \kappa^+$ such that $T(Y_{\alpha}) = T(Y_{\alpha+1})$.

Lemma 39

Suppose that the trivial approximation is Y_{α} -terminal. Then there is a κ^+ -Borel κ -coloring of G.

Proof of Lemma 39

Note first that $Y_{\alpha+1} = \emptyset$, thus $\kappa^{\omega} = \bigcup_{\beta < \alpha} Y_{\beta} \setminus Y_{\beta+1}$.

As all $G \upharpoonright (Y_{\beta} \setminus Y_{\beta+1})$ admit κ^+ -Borel κ -colorings, so does G.

Lemma 40

Suppose that *a* is an approximation, $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel, and *a* is not Y'-terminal. Then there is a one-step extension of *a* which is not Y-terminal.

Proof of Lemma 40

Fix a one-step extension b of a for which $\Gamma(b, Y') \neq \emptyset$.

Fix a configuration $\gamma \in \Gamma(b, Y')$.

Then $\varphi^{\gamma}(s_{n^b}) \in Y'$, thus b is not Y-terminal.

Lemma 41

Suppose that the trivial approximation is not Y_{α} -terminal. Then there is a continuous homomorphism from G_0 to G.

Proof of Lemma 41

By Lemma 40, there are approximations $a_n = (n, \varphi_n, (\psi_{k,n})_{k \in n})$ that are not Y_{α} -terminal, and each of which is extended by the next.

Define
$$\varphi \colon d^{\omega} \to \kappa^{\omega}$$
 and $\psi_k \colon d^{\omega} \to \kappa^{\omega}$ by
 $\varphi(x) = \bigcup_{n \in \omega} \varphi_n(x \upharpoonright n)$ and $\psi_k(x) = \bigcup_{k \in n \in \omega} \psi_{k,n}(x \upharpoonright (n - (k + 1))).$

III. The hypergraph G_0 dichotomy The main theorem

Proof of Lemma 41 (continued)

It remains to show that if $k \in \omega$ and $x \in d^{\omega}$, then

$$(\psi_k(x),(\varphi(s_k^{\frown}i^{\frown}x))_{i\in d})\in [*].$$

It is enough to show that every open neighborhood U of the pair $(\psi_k(x), (\varphi(s_k^{-}i^{-}x))_{i \in d})$ contains a point of [*].

Towards this end, fix $n \in \omega$ sufficiently large that $k \in n$ and

$$\mathcal{N}_{\psi_{k,n}(s)} imes \prod_{i \in d} \mathcal{N}_{\varphi_n(s_k \cap i \cap s)} \subseteq U,$$

where $s = x \upharpoonright (n - (k + 1))$.

III. The hypergraph G_0 dichotomy The main theorem

Proof of Lemma 41 (continued)

Our choice of a_n ensures the existence of $\gamma \in \Gamma(a_n, Y_\alpha)$.

Then
$$(\psi^{\gamma}(s), (\varphi^{\gamma}(s_{k} \cap i \cap s))_{i \in d}) \in [*] \cap U.$$
 \boxtimes \boxtimes

Part IV

Applying the hypergraph dichotomy

Theorem 42 (Kunen-Miller-van Engelen)

Suppose that $d \in \omega \setminus 2$, κ is an aleph, X is a Hausdorff space, $A \subseteq X$ is analytic, and X is equipped with a vector space structure for which the set $D \subseteq X^{\leq d}$ of dependent sequences is weakly ω -universally Baire and co- κ -Souslin. Then at least one of the following holds:

- There is a cover of A with κ-many translates of (≤ d)-dimensional, κ⁺-Borel subsets of X.
- 2 There is a continuous embedding of the set of non-injective sequences in (2^ω)^{d+1} into A^{d+1} ∩ D.

IV. Applying the hypergraph dichotomy Covering vector spaces

Proof of Theorem 42

For each $\ell \leq d$, set $G_{\ell} = \{(x_i)_{i \leq \ell} \in A^{\ell+1} \mid (x_i - x_{\ell})_{i \in \ell} \notin D\}.$

If there is a κ^+ -Borel κ -coloring of G_d , then we obtain the covering.

By Theorem 34, we can assume that there is a continuous homomorphism $\varphi \colon (d+1)^{\omega} \to X$ from $G_0((d+1)^{\omega})$ to G_d .

For each $\ell \leq d$, set $H_{\ell} = (\varphi^{\ell})^{-1}(G_{\ell})$.

IV. Applying the hypergraph dichotomy Covering vector spaces

Lemma 43

Suppose that $\ell \leq d$. Then H_{ℓ}^{c} is meager.

Proof of Lemma 43

By Kuratowski-Ulam, it is enough to show that if $\ell \in d$, $x \in H_{\ell}$, and $(H_{\ell+1})_x$ has the Baire property, then $(H_{\ell+1})_x$ is comeager.

Suppose that $(H_{\ell+1})_x$ is not comeager.

Then there exists $(x_i)_{i \in d+1} \in G_0((d+1)^{\omega}) \upharpoonright (H_{\ell+1})_x^c$.

Then $(\varphi(x_i))_{i \in d+1} \notin G$, a contradiction.

IV. Applying the hypergraph dichotomy Covering vector spaces

Proof of Theorem 42 (continued)

By Mycielski, there is a continuous embedding ψ of the set of non-injective sequences in $(2^{\omega})^d$ into D_d .

Then $\varphi \circ \psi$ is a continuous embedding of the set of non-injective sequences in $(2^{\omega})^d$ into D.

Part V

The sequential G_0 dichotomy

V. The sequential G_0 dichotomy Basic graph-theoretic definitions

Definition

A set $Y \subseteq X$ is $(G^n)_{n \in \omega}$ -independent if it is G^n -independent for some $n \in \omega$.

An (I-)coloring of $(G^n)_{n \in \omega}$ is a function $c: X \to I$ with the property that for all $i \in I$, the set $c^{-1}(\{i\})$ is $(G^n)_{n \in \omega}$ -independent.

Suppose that $(d_n)_{n \in \omega} \in (\omega \setminus 2)^{\omega}$ and $f : \omega \times \omega \to \omega$ is a bijection.

V. The sequential G_0 dichotomy Basic graph-theoretic definitions

Example

Associated with each set $S \subseteq \bigcup_{n \in \omega} \prod_{m \in n} d_{f_0(m)}$ are the sets

$$S^k = \{s \in S \cap \prod_{m \in n} d_{f_0(m)} \mid n \in \omega \text{ and } f_0(n) = k\}$$

and the dihypergraphs

$$G_{\mathcal{S}}^{k} = \{(s^{\frown}i^{\frown}x)_{i\in d} \mid s\in \mathcal{S}^{k} \text{ and } x\in \prod_{n\in\omega} d_{f_{0}(n)}\}.$$

V. The sequential G_0 dichotomy Basic graph-theoretic definitions

Definition

A set
$$S \subseteq \bigcup_{n \in \omega} \prod_{m \in n} d_{f_0(m)}$$
 is *dense* if
 $\forall k \in \omega \forall n \in \omega \forall r \in \prod_{m \in n} d_{f_0(m)} \exists s \in S^k \ (r \sqsubseteq s).$

Definition

Fix $s_n \in \prod_{m \in n} d_{f_0(m)}$ such that the set $S = \{s_n \mid n \in \omega\}$ is dense.

Define
$$G_0^k(\prod_{n\in\omega} d_{f_0(n)}) = G_S^k$$
.

Define also $G_0^k = G_0^k(2^\omega)$.

Theorem 44

Suppose that κ is an aleph, X is a Hausdorff space, and G^k is a κ -Souslin, $(\leq d_k)$ -dimensional dihypergraph on X. Then at least one of the following holds:

- **1** There is a κ^+ -Borel κ -coloring of G.
- **2** There is a continuous homomorphism from the ω -sequence $(G_0^k(\prod_{n \in \omega} d_{f_0(n)}))_{k \in \omega}$ to the ω -sequence $(G^k)_{k \in \omega}$.

Proof of Theorem 44

We will prove the special case of the theorem for good κ .

Lemma 45

It is sufficient to handle the special case that $X = \kappa^{\omega}$.

Proof of Lemma 45

We can clearly assume that every G^k is non-empty, thus so too is every set of the form $\operatorname{proj}_X(G^k) \neq \emptyset$.

Fix a continuous surjection $\varphi \colon \kappa^{\omega} \to \bigcup_{k \in \omega} \operatorname{proj}_{X}(G^{k})$.

Set $H^k = (\varphi^d)^{-1}(G^k)$.

Proof of Lemma 45 (continued)

If there is a κ^+ -Borel κ -coloring of $(H^k)_{k\in\omega}$, then Lemma 5 allows us to produce a κ^+ -Borel κ -coloring of $(G^k)_{k\in\omega}$.

If $\psi \colon \prod_{n \in \omega} d_{f_0(n)} \to \kappa^{\omega}$ is a continuous homomorphism from $(G_0^k(\prod_{n \in \omega} d_{f_0(n)}))_{k \in \omega}$ to $(H^k)_{k \in \omega}$, then $\varphi \circ \psi$ is a continuous homomorphism from $(G_0^k(\prod_{n \in \omega} d_{f_0(n)}))_{k \in \omega}$ to $(G^k)_{k \in \omega}$.

Definition

An approximation is a triple
$$a = (n^a, \varphi^a, (\psi^a_k)_{k \in n^a})$$
, where $n^a \in \omega$,
 $\varphi^a \colon \prod_{m \in n^a} d_{f_0(m)} \to \kappa^{n^a}$, and $\psi^a_k \colon \prod_{m \in n^a \setminus (k+1)} d_{f_0(m)} \to \kappa^{n^a}$.

We say that an approximation *a* is *extended* by an approximation *b* if φ^a and $(\psi^a_k)_{k \in n^a}$ are extended by φ^b and $(\psi^b_k)_{k \in n^a}$.

If $n^b = n^a + 1$, then we say that b is a one-step extension of a.

Fix a κ -length well-ordering of the set of all approximations.

Proof of Theorem 44 (continued)

Fix trees \mathfrak{F}^k on $\kappa \times \kappa^d$ such that $G^k = \operatorname{proj}_{(\kappa^{\omega})^d}[\mathfrak{F}^k]$.

Definition

A configuration is a triple $\gamma = (n^{\gamma}, \varphi^{\gamma}, (\psi_k^{\gamma})_{k \in n^{\gamma}})$, where $n^{\gamma} \in \omega$, $\varphi^{\gamma} \colon \prod_{m \in n^{\gamma}} d_{f_0(m)} \to \kappa^{\omega}$, and $\psi_k^{\gamma} \colon \prod_{m \in n^{\gamma} \setminus (k+1)} d_{f_0(m)} \to \kappa^{\omega}$, with

$$(\psi_k^{\gamma}(s),(\varphi^{\gamma}(s_k^{\frown}i^{\frown}s))_{i\in d_{f_0(k)}})\in [\mathfrak{F}^{f_0(k)}]$$

for all $k \in n^{\gamma}$ and $s \in \prod_{m \in n^{\gamma} \setminus (k+1)} d_{f_0(m)}$.

Definition

We say that a configuration γ is *compatible* with an approximation *a* if the following conditions are satisfied:

We say that γ is *compatible* with $Y \subseteq \kappa^{\omega}$ if $\varphi^{\gamma}[\prod_{m \in n^{\gamma}} d_{f_0(m)}] \subseteq Y$.

We use $\Gamma(a, Y)$ to denote the family of all configurations which are compatible with both *a* and *Y*.

Definition

We say that an approximation *a* is *Y*-terminal if $\Gamma(b, Y) = \emptyset$ for all one-step extensions *b* of *a*.

We use T(Y) to denote the family of all such approximations.

Define $A(a, Y) \subseteq Y$ by $A(a, Y) = \{\varphi^{\gamma}(s_{n^a}) \mid \gamma \in \Gamma(a, Y)\}.$

Lemma 46

Suppose that a is an approximation, $Y \subseteq \kappa^{\omega}$, and A(a, Y) is not $(G^k)_{k \in \omega}$ -independent. Then a is not Y-terminal.

Proof of Lemma 46

Fix configurations
$$\gamma_i \in \Gamma(a, Y)$$
 with $(\varphi^{\gamma_i}(s_{n^a}))_{i \in d_{f_n(n^a)}} \in G^{f_0(n^a)}$.

Fix
$$x \in \kappa^{\omega}$$
 such that $(x, (\varphi^{\gamma_i}(s_{n^a}))_{i \in d_{f_0(n^a)}}) \in [\mathfrak{F}^{f_0(n^a)}].$

Proof of Lemma 46 (continued)

Let γ denote the configuration given by:

$$1 n^{\gamma} = n^a + 1.$$

$$e \forall i \in d_{f_0(n^a)} \forall s \in \prod_{m \in n^a} d_{f_0(m)} \ (\varphi^{\gamma}(s^{\frown}i) = \varphi^{\gamma_i}(s)).$$

$$\begin{array}{l} \boldsymbol{\Im} \hspace{0.1cm} \forall i \in d_{f_{0}(n^{a})} \forall k \in n^{a} \forall s \in \prod_{m \in n^{a} \setminus (k+1)} d_{f_{0}(m)} \\ (\psi_{k}^{\gamma}(s^{\frown}i) = \psi_{k}^{\gamma_{i}}(s)). \end{array}$$

$$\Psi_{n^a}^{\gamma}(\emptyset) = x.$$

Proof of Lemma 46 (continued)

Let *b* denote the approximation given by:

Proof of Lemma 46 (continued)

Clearly γ is compatible with *b*.

Clearly b is a one-step extension of a.

It follows that *a* is not *Y*-terminal.

 \square

Lemma 47

Suppose that *a* is an approximation, $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel, and *a* is Y-terminal. Then there is a $(G^k)_{k\in\omega}$ -independent, κ^+ -Borel subset B(a, Y) of κ^{ω} such that $A(a, Y) \subseteq B(a, Y)$.

Proof of Lemma 47

Lemma 46 ensures that A(a, Y) is $(G^k)_{k \in \omega}$ -independent.

The desired result therefore follows from Lemma 33.

 \boxtimes

Definition

Set
$$Y' = Y \setminus \bigcup_{a \in T(Y)} B(a, Y)$$
.

Lemma 48

There is a κ^+ -Borel κ -coloring of $G \upharpoonright (Y \setminus Y')$.

Proof of Lemma 48

Define $c(y) = \min\{a \in T(Y) \mid y \in B(a, Y)\}$ for $y \in Y \setminus Y'$.

As $c^{-1}(\{a\}) \subseteq B(a, Y)$ for all $a \in T(Y)$, it follows that c is a coloring of $G \upharpoonright (Y \setminus Y')$.

Definition

Recursively define a sequence $(Y_{\alpha})_{\alpha \in \kappa^+}$ of subsets of κ^{ω} by

$$Y_{\alpha} = \begin{cases} \kappa^{\omega} & \text{if } \alpha = 0, \\ Y'_{\beta} & \text{if } \alpha = \beta + 1, \text{ and} \\ \bigcap_{\beta \in \alpha} Y_{\beta} & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

Since there are only κ -many approximations, there exists $\alpha \in \kappa^+$ such that $T(Y_{\alpha}) = T(Y_{\alpha+1})$.

Lemma 49

Suppose that the trivial approximation is Y_{α} -terminal. Then there is a κ^+ -Borel κ -coloring of $(G^k)_{k \in \omega}$.

Proof of Lemma 49

Note first that
$$Y_{\alpha+1} = \emptyset$$
, thus $\kappa^{\omega} = \bigcup_{\beta < \alpha} Y_{\beta} \setminus Y_{\beta+1}$.

As all of the sequences $(G^k)_{k\in\omega} \upharpoonright (Y_{\beta} \setminus Y_{\beta+1})$ admit κ^+ -Borel κ -colorings, so too does $(G^k)_{k\in\omega}$.

Lemma 50

Suppose that *a* is an approximation, $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel, and *a* is not Y'-terminal. Then there is a one-step extension of *a* which is not Y-terminal.

Proof of Lemma 50

Fix a one-step extension b of a for which $\Gamma(b, Y') \neq \emptyset$.

Fix a configuration $\gamma \in \Gamma(b, Y')$.

Then $\varphi^{\gamma}(s_{n^b}) \in Y'$, thus b is not Y-terminal.

Lemma 51

Suppose that the trivial approximation a_0 is not Y_{α} -terminal. Then there is a continuous homomorphism from the sequence $(G_0^k(\prod_{n\in\omega} d_{f_0(n)}))_{k\in\omega}$ to the sequence $(G^k)_{k\in\omega}$.

Proof of Lemma 51

By Lemma 50, there are approximations $a_n = (n, \varphi_n, (\psi_{k,n})_{k \in n})$ that are not Y_{α} -terminal, and each of which is extended by the next.

Define
$$\varphi \colon \prod_{n \in \omega} d_{f_0(n)} \to \kappa^{\omega}$$
 and $\psi_k \colon \prod_{n \in \omega \setminus (k+1)} d_{f_0(n)} \to \kappa^{\omega}$ by
 $\varphi(x) = \bigcup_{n \in \omega} \varphi_n(x \upharpoonright n)$ and $\psi_k(x) = \bigcup_{k \in n \in \omega} \psi_{k,n}(x \upharpoonright (n - (k+1))).$

Proof of Lemma 51 (continued)

It remains to show that if $k \in \omega$ and $x \in \prod_{n \in \omega \setminus (k+1)} d_{f_0(n)}$, then

$$(\psi_k(x),(\varphi(s_k^{\frown}i^{\frown}x))_{i\in d_{f_0(k)}})\in [\mathfrak{F}^{f_0(k)}].$$

It is enough to show that every open neighborhood U of the pair $(\psi_k(x), (\varphi(s_k^{-}i^{-}x))_{i \in d_{f_0(k)}})$ contains a point of $[\$^{f_0(k)}]$.

Proof of Lemma 51 (continued)

Towards this end, fix $n \in \omega$ sufficiently large that $k \in n$ and

$$\mathcal{N}_{\psi_{k,n}(s)} imes \prod_{i \in d_{f_0(k)}} \mathcal{N}_{\varphi_n(s_k \cap i \cap s)} \subseteq U,$$

where $s = x \upharpoonright (n - (k + 1))$.

Our choice of a_n ensures the existence of $\gamma \in \Gamma(a_n, Y_\alpha)$.

Then
$$(\psi^{\gamma}(s), (\varphi^{\gamma}(s_k \cap i \cap s))_{i \in d_{f_0(k)}}) \in [\mathfrak{F}^{f_0(k)}] \cap U.$$
 \square \square

Part VI

Applications of the sequential G_0 dichotomy

VI. Applications of the sequential G_0 dichotomy

The perfect set theorem for sequences of equivalence relations

Theorem 52

Suppose that κ is an aleph, X is a Hausdorff space, and $(E^n)_{n \in \omega}$ is a sequence of ω -universally Baire, co- κ -Souslin equivalence relations on X. Then at least one of the following holds:

- **1** There is a cover of X with κ -many equivalence classes.
- **2** There is a continuous embedding of $\Delta(2^{\omega})$ into $\bigcup_{n \in \omega} E^n$.

Proof of Theorem 52

Define $G^n = (E^n)^c$.

If there is a κ -coloring of $(G^n)_{n \in \omega}$, then there is a cover of X with κ -many equivalence classes.

VI. Applications of the sequential G_0 dichotomy

The perfect set theorem for sequences of equivalence relations

Proof of Theorem 52 (continued)

By Theorem 44, we can assume that there is a continuous homomorphism $\varphi: 2^{\omega} \to X$ from $(G_0^n)_{n \in \omega}$ to $(G^n)_{n \in \omega}$.

Define $F^n = (\varphi \times \varphi)^{-1}(E^n)$.

Essentially by Lemma 15, each F^n is meager.

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into the union $\bigcup_{n \in \omega} F^n$.

Then $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into $\bigcup_{n \in \omega} E^n$.

VI. Applications of the sequential G_0 dichotomy Bases for vector spaces

Theorem 53

Suppose that κ is an aleph and X is a Hausdorff space equipped with a vector space structure for which the set $D \subseteq X^{<\omega}$ of dependent sequences is ω -universally Baire and co- κ -Souslin. Then at least one of the following holds:

- **()** There is a basis for X of cardinality at most κ .
- There is a continuous embedding of the set of non-injective sequences in (2^{\u03c6})^{<\u03c6} into D.

VI. Applications of the sequential G_0 dichotomy Bases for vector spaces

Proof of Theorem 53

Set $G^n = X^{n+2} \setminus D$.

If there is a κ^+ -Borel κ -coloring of $(G^n)_{n \in \omega}$, then there is a covering of X by κ -many finite-dimensional sets, thus there is a basis of cardinality at most κ .

By Theorem 44, we can assume that there is a continuous homomorphism φ from $(G_0^n(\prod_{n\in\omega} f_0(n)+2))_{n\in\omega}$ to $(G^n)_{n\in\omega}$.

For each $\ell \in \omega$, set $D_{\ell} = (\varphi^{\ell})^{-1}(D)$.

VI. Applications of the sequential G_0 dichotomy Bases for vector spaces

Lemma 54

Suppose that $\ell \in \omega \setminus 1$. Then D_{ℓ} is meager.

Proof of Lemma 54

By Kuratowski-Ulam, it is enough to show that if $\ell \in \omega \setminus 1$, $x \in D_{\ell}^{c}$, and $(D_{\ell+1})_{x}$ has the Baire property, then $(D_{\ell+1})_{x}$ is meager.

Suppose that $(D_{\ell+1})_x$ is non-meager.

Then there exists
$$(x_i)_{i \in \ell+1} \in G_0^{\ell+1}(\prod_{n \in \omega} f_0(n) + 2) \upharpoonright (D_{\ell+1})_x$$
.

Then $(\varphi(x_i))_{i \in \ell+1} \notin G^{\ell+1}$, a contradiction.

VI. Applications of the sequential G_0 dichotomy Bases for vector spaces

Proof of Theorem 53 (continued)

By Mycielski, there is continuous embedding ψ of the set of noninjective sequences in $(2^{\omega})^{<\omega}$ into $\bigcup_{\ell \in \omega} D_{\ell}$.

Then $\varphi \circ \psi$ is a continuous embedding of the set of non-injective sequences in $(2^{\omega})^{<\omega}$ into D.

VI. Applications of the sequential G_0 dichotomy Glimm-Effros for treeable equivalence relations

Theorem 55 (Hjorth)

Suppose that κ is an aleph, X is a Hausdorff space, and G is an acyclic, κ -Souslin graph on X such that $E_G \setminus d_G^{-1}(n)$ is ω -universally Baire for all $n \in \omega$. Then at least one of the following holds:

- There are κ -many κ^+ -Borel sets such that every E_G -class intersects one of them in a singleton.
- **2** There is a continuous embedding of E_0 into E_G .

Glimm-Effros for treeable equivalence relations

Proof of Theorem 55

We will establish the special case of the theorem for good κ .

Set $G^n = E_G \setminus d_G^{-1}(n)$.

Suppose first that there is a κ^+ -Borel κ -coloring of $(G^n)_{n \in \omega}$.

Then there is a cover with κ -many κ^+ -Borel sets of finite diameter.

Glimm-Effros for treeable equivalence relations

Lemma 56

Suppose that $B \subseteq X$ is a κ^+ -Borel set of diameter strictly less than 2n. Then there are κ^+ -Borel sets $(B_i)_{i \in n}$ such that every E_G -class which intersects B intersects some B_i in 1 or 2 points.

Proof of Lemma 56

Set $B_0 = B$.

Let A_{i+1} denote the domain of the tree obtained by pruning $G \upharpoonright B_i$.

By Lemma 5, there is a κ^+ -Borel set $B_{i+1} \subseteq X$ of the same diameter as A_{i+1} such that $A_{i+1} \subseteq B_{i+1}$.

Glimm-Effros for treeable equivalence relations

Proof of Theorem 55 (continued)

The desired covering can therefore be obtained by intersecting with elements of a basis.

By Theorem 44, we can assume that there is a continuous homomorphism φ from $(G_0^n)_{n\in\omega}$ to $(G^n)_{n\in\omega}$.

Glimm-Effros for treeable equivalence relations

Lemma 57

Suppose that $n \in \omega$. Then $d_G^{-1}(n)$ is meager.

Proof of Lemma 57

By Kuratowski-Ulam, it is enough to show that if $d_G^{-1}(n)_x$ has the Baire property, then it is meager.

Suppose that $d_G^{-1}(n)_{\times}$ is non-meager.

Glimm-Effros for treeable equivalence relations

Proof of Lemma 57 (continued)

Then there exists $(y, z) \in G_0^{2n} \upharpoonright d_G^{-1}(n)_{\times}$.

Then $(\varphi(y), \varphi(z)) \notin G^{2n}$, a contradiction.

 \square

Glimm-Effros for treeable equivalence relations

Proof of Theorem 55 (continued)

Set
$$D = (\varphi \times \varphi)^{-1}(\Delta(X))$$
 and $F = (\varphi \times \varphi)^{-1}(E)$.

Then F is a meager equivalence relation which contains E_0 .

By Lemma 27, there is a continuous embedding ψ of $(\Delta(2^{\omega}), E_0)$ into (D, F).

Then $\varphi \circ \psi$ is a continuous embedding of E_0 into E.

Part VII

The local G_0 dichotomy

VII. The local G_0 dichotomy Generalized examples

Example

The digraph on 2^{ω} associated with $T \subseteq \bigcup_{n \in \omega} 2^n \times 2^n$ is given by

 $H_T = \{ (t(0)^{\frown} 0^{\frown} x, t(1)^{\frown} 1^{\frown} x) \mid t \in T \text{ and } x \in 2^{\omega} \}.$

In particular, if
$$S \subseteq 2^{<\omega}$$
, then $G_S = H_{\Delta(S)}$.

Definition

A set
$$T \subseteq \bigcup_{n \in \omega} 2^n \times 2^n$$
 is *dense* if
 $\forall s \in 2^{<\omega} \times 2^{<\omega} \exists t \in T \forall i \in 2 \ (s(i) \sqsubseteq t(i)).$

Higher-dimensional generic ergodicity

Lemma 58

Suppose that $T \subseteq \bigcup_{n \in \omega} 2^n \times 2^n$ is dense and $R \subseteq 2^{\omega} \times 2^{\omega}$ is a transitive set with the Baire property for which $H_T \subseteq R$. Then R is meager or comeager.

Proof of Lemma 58

Suppose, towards a contradiction, that there exist $u, v \in 2^{<\omega} \times 2^{<\omega}$ with R comeager in $\mathcal{N}_{u(1)} \times \mathcal{N}_{v(0)}$ and meager in $\mathcal{N}_{u(0)} \times \mathcal{N}_{v(1)}$.

VII. The local G_0 dichotomy Higher-dimensional generic ergodicity

Proof of Lemma 58 (continued)

Fix $s, t \in T$ such that $u(i) \sqsubseteq s(i)$ and $v(i) \sqsubseteq t(i)$ for all $i \in 2$.

Then
$$\forall^* x, y \in 2^{\omega} (s(0)^{\circ} xRs(1)^{1} xRt(0)^{\circ} yRt(1)^{1}).$$

This contradicts the fact that *R* is meager in $\mathcal{N}_{u(0)} \times \mathcal{N}_{v(1)}$.

Definition

Fix sequences $s_{2n} \in 2^{2n}$ and $t_{2n+1} \in 2^{2n+1} \times 2^{2n+1}$ such that the sets $S = \{s_{2n} \mid n \in \omega\}$ and $T = \{t_{2n+1} \mid n \in \omega\}$ are dense.

Define $G_0^{\text{even}} = G_S$ and $H_0^{\text{odd}} = H_T$.

Lemma 59

Suppose that κ is a good aleph, X is a Hausdorff space, E is a weakly κ -Souslin equivalence relation on X, R is a weakly κ -Souslin quasi-order on X, and (A_0, A_1) is an $(E \cap R)$ -independent pair of weakly κ -Souslin sets. Then there is an $(E \cap R)$ -independent pair (B_0, B_1) of κ^+ -Borel sets such that $A_0 \subseteq B_0$, $A_1 \subseteq B_1$, B_0 is upward $(E \cap R)$ -invariant, and B_1 is downward $(E \cap R)$ -invariant.

Proof of Lemma 59

Set $A_{0,0} = A_0$ and $A_{1,0} = A_1$.

Proof of Lemma 59 (continued)

Given an $(E \cap R)$ -independent pair $(A_{0,n}, A_{1,n})$ of weakly κ -Souslin sets, fix an $(E \cap R)$ -independent pair $(B_{0,n}, B_{1,n})$ of κ^+ -Borel subsets of X such that $A_{0,n} \subseteq B_{0,n}$ and $A_{1,n} \subseteq B_{1,n}$.

Set
$$A_{0,n+1} = [B_{0,n}]^{E \cap R}$$
 and $A_{1,n+1} = [B_{1,n}]_{E \cap R}$.

Define $B_0 = \bigcup_{n \in \omega} B_{0,n}$ and $B_1 = \bigcup_{n \in \omega} B_{1,n}$.

Lemma 60

Suppose that κ is a good aleph, X is a Hausdorff space, E is a weakly κ -Souslin equivalence relation on X, R is a weakly bi- κ -Souslin quasi-order on X, and (A_0, A_1) is an $(E \setminus R)$ -independent pair of weakly κ -Souslin sets. Then there is an $(E \setminus R)$ -independent pair (B_0, B_1) of κ^+ -Borel sets such that $A_0 \subseteq B_0$, $A_1 \subseteq B_1$, B_0 is downward $(E \cap R)$ -invariant, and B_1 is upward $(E \cap R)$ -invariant.

Proof of Lemma 60

Set $A_{0,0} = A_0$ and $A_{1,0} = A_1$.

Proof of Lemma 60 (continued)

Given an $(E \setminus R)$ -independent pair $(A_{0,n}, A_{1,n})$ of weakly κ -Souslin sets, fix an $(E \setminus R)$ -independent pair $(B_{0,n}, B_{1,n})$ of κ^+ -Borel subsets of X such that $A_{0,n} \subseteq B_{0,n}$ and $A_{1,n} \subseteq B_{1,n}$.

Set
$$A_{0,n+1} = [B_{0,n}]_{E \cap R}$$
 and $A_{1,n+1} = [B_{1,n}]^{E \cap R}$.

Define $B_0 = \bigcup_{n \in \omega} B_{0,n}$ and $B_1 = \bigcup_{n \in \omega} B_{1,n}$.

Definition

An equivalence relation E on X is κ -smooth if there is a κ^+ -Borel reduction of E to $\Delta(2^{\kappa})$.

Theorem 61

Suppose that κ is an aleph, X is a Hausdorff space, G is a κ -Souslin digraph on X, and E is a κ -Souslin equivalence relation on X. Then at least one of the following holds:

- There is a κ^+ -Borel κ -coloring of $F \cap G$, for some κ -smooth equivalence relation F on X with $E \subseteq F$.
- 2 There is a continuous homomorphism from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to the pair (G, E).

Definition

A quasi-order R on X is κ -lexicographically reducible if for some $\alpha \in \kappa^+$ there is a κ^+ -Borel reduction of R to $R_{\text{lex}}(2^{\alpha})$.

Theorem 62

Suppose that κ is an aleph, X is a Hausdorff space, G is a κ -Souslin digraph on X, and R is a κ -Souslin quasi-order on X. Then at least one of the following holds:

- There is a κ^+ -Borel κ -coloring of $\equiv_S \cap G$, for some κ -lexicographically reducible quasi-order S on X with $R \subseteq S$.
- 2 There is a continuous homomorphism from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to the pair (G, R).

Proof of Theorem 62

We will establish the special case of the theorem for good κ .

Lemma 63

It is sufficient to handle the special case that $X = \kappa^{\omega}$.

Proof of Lemma 63

We can clearly assume that $X \neq \emptyset$, so there is a continuous surjection $\varphi \colon \kappa^{\omega} \to X$.

Set
$$G' = (\varphi \times \varphi)^{-1}(G)$$
 and $R' = (\varphi \times \varphi)^{-1}(R)$.

Proof of Lemma 63 (continued)

If there is a κ^+ -Borel κ -coloring of $\equiv_{S'} \cap G'$, for some κ -lexicographically reducible quasi-order S' on κ^{ω} with $R' \subseteq S'$, then Lemmas 5 and 59 can be used to produce the desired coloring c and quasi-order S.

If $\psi: 2^{\omega} \to \kappa^{\omega}$ is a continuous homomorphism from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to (G', R'), then $\varphi \circ \psi$ is a continuous homomorphism from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to (G, R).

Definition

An approximation is a triple of the form $a = (n^a, \varphi^a, (\psi^a_k)_{k \in n^a})$, where $n^a \in \omega$, $\varphi^a \colon 2^{n^a} \to \kappa^{n^a}$, and $\psi^a_k \colon 2^{n^a - (k+1)} \to \kappa^{n^a}$.

We say that an approximation *a* is *extended* by an approximation *b* if for all $k \in n^a$, the following conditions are satisfied:

1
$$n^a \leq n^b$$
.
2 $\forall r \in 2^{n^a} \forall s \in 2^{n^b} (r \sqsubseteq s \implies \varphi^a(r) \sqsubseteq \varphi^b(s)).$
3 $\forall r \in 2^{n^a - (k+1)} \forall s \in 2^{n^b - (k+1)} (r \sqsubseteq s \implies \psi^a_k(r) \sqsubseteq \psi^b_k(s)).$
If $n^b = n^a + 1$, then we say that b is a one-step extension of a.

Proof of Theorem 62 (continued)

Fix a κ -length well-ordering of the set of all approximations.

Fix trees F_G and F_R on $\kappa \times (\kappa \times \kappa)$ such that $G = \operatorname{proj}_{\kappa^{\omega} \times \kappa^{\omega}}[F_G]$ and $R = \operatorname{proj}_{\kappa^{\omega} \times \kappa^{\omega}}[F_R]$.

Definition

A configuration is a triple of the form $\gamma = (n^{\gamma}, \varphi^{\gamma}, (\psi_k^{\gamma})_{k \in n^{\gamma}})$, where $n^{\gamma} \in \omega$, $\varphi^{\gamma} : 2^{n^{\gamma}} \to \kappa^{\omega}$, and $\psi_k^{\gamma} : 2^{n^{\gamma} - (k+1)} \to \kappa^{\omega}$, such that

$$(\psi_k^\gamma(s),(\varphi^\gamma(s_k^{-}0^{-}s),\varphi^\gamma(s_k^{-}1^{-}s)))\in [\$_G]$$

for all even $k \in n^{\gamma}$ and $s \in 2^{n^{\gamma}-(k+1)}$, and

 $(\psi_k^\gamma(s),(\varphi^\gamma(t_k(0)^\frown 0^\frown s),\varphi^\gamma(t_k(1)^\frown 1^\frown s)))\in [\clubsuit_R]$

for all odd $k \in n^{\gamma}$ and $s \in 2^{n^{\gamma}-(k+1)}$.

The main theorem

Definition

A configuration γ is *compatible* with an approximation *a* if:

Suppose that $Y \subseteq \kappa^{\omega}$ is κ^+ -Borel and S is a κ -lexicographically reducible quasi-order on κ^{ω} such that $R \subseteq S$.

We say that γ is *compatible* with *S* if $\varphi^{\gamma}[2^{n^{\gamma}}] \times \varphi^{\gamma}[2^{n^{\gamma}}] \subseteq S$.

We say that γ is *compatible* with Y if $\varphi^{\gamma}[2^{n^{\gamma}}] \subseteq Y$.

Definition

We use $\Gamma(a, S, Y)$ to denote the family of all configurations which are compatible with *a*, *S*, and *Y*.

We say that an approximation *a* is (S, Y)-terminal if $\Gamma(b, S, Y) = \emptyset$ for all one-step extensions *b* of *a*.

Definition

We say that an approximation a is even if n^a is even.

Let $T_{even}(S, Y)$ be the set of (S, Y)-terminal even approximations.

For each even approximation a, define $A(a, S, Y) \subseteq Y$ by

$$A(a, S, Y) = \{\varphi^{\gamma}(s_{n^a}) \mid \gamma \in \Gamma(a, S, Y)\}.$$

Lemma 64

Suppose that *a* is an even approximation for which A(a, S, Y) is not $(\equiv_S \cap G)$ -independent. Then *a* is not (S, Y)-terminal.

Proof of Lemma 64

Fix configurations $\gamma_0, \gamma_1 \in \Gamma(a, S, Y)$ with the property that

$$(\varphi^{\gamma_0}(s_{n^a}),\varphi^{\gamma_1}(s_{n^a}))\in\equiv_S\cap G.$$

Fix $x \in \kappa^{\omega}$ such that $(x, (\varphi^{\gamma_0}(s_{n^a}), \varphi^{\gamma_1}(s_{n^a}))) \in [*_G]$.

Proof of Lemma 64 (continued)

Let γ denote the configuration given by:

1
$$n^{\gamma} = n^{a} + 1.$$

$$2 \quad \forall i \in 2 \forall s \in 2^{n^a} \ (\varphi^{\gamma}(s^{\frown}i) = \varphi^{\gamma_i}(s)).$$

$$\Psi_{n^a}^{\gamma}(\emptyset) = x.$$

Let b denote the approximation given by:

Proof of Lemma 64 (continued)

Clearly γ is compatible with *b*.

Clearly b is a one-step extension of a.

It follows that a is not (S, Y)-terminal.

 \boxtimes

Lemma 65

Suppose that *a* is an even, (S, Y)-terminal approximation. Then there is an $(\equiv_S \cap G)$ -independent, κ^+ -Borel set $B(a, S, Y) \subseteq \kappa^{\omega}$ such that $A(a, S, Y) \subseteq B(a, S, Y)$.

Proof of Lemma 65

Lemma 64 ensures that A(a, S, Y) is $(\equiv_S \cap G)$ -independent.

The desired result therefore follows from Lemma 5.

Definition

Set
$$Y' = Y \setminus \bigcup_{a \in T_{even}(S,Y)} B(a, S, Y).$$

Lemma 66

There is a
$$\kappa^+$$
-Borel κ -coloring of $(\equiv_S \cap G) \upharpoonright (Y \setminus Y')$.

Proof of Lemma 66

Define $c(y) = \min\{a \in T(S, Y) \mid y \in B(a, S, Y)\}$ for $y \in Y \setminus Y'$.

As $c^{-1}(\{a\}) \subseteq B(a, S, Y)$ for all $a \in T(S, Y)$, it follows that c is a coloring of $(\equiv_S \cap G) \upharpoonright (Y \setminus Y')$.

Definition

We say that an approximation a is odd if n^a is odd.

Let $T_{odd}(S, Y)$ be the set of (S, Y)-terminal odd approximations.

For each odd approximation *a* and $i \in 2$, define $A_i(a, S, Y) \subseteq Y$ by

 $A_i(a, S, Y) = \{\varphi^{\gamma} \circ t_{n^a}(i) \mid \gamma \in \Gamma(a, S, Y)\}.$

Lemma 67

Suppose that *a* is an odd approximation for which the pair $(A_0(a, S, Y), A_1(a, S, Y))$ is not $(\equiv_S \cap R)$ -independent. Then *a* is not (S, Y)-terminal.

Proof of Lemma 67

Fix configurations $\gamma_0, \gamma_1 \in \Gamma(a, S, Y)$ with the property that

$$(\varphi^{\gamma_0}\circ t_{n^a}(0), \varphi^{\gamma_1}\circ t_{n^a}(1))\in \equiv_{\mathcal{S}}\cap R.$$

Fix $x \in \kappa^{\omega}$ such that $(x, (\varphi^{\gamma_0} \circ t_{n^a}(0), \varphi^{\gamma_1} \circ t_{n^a}(1))) \in [\aleph_R].$

Proof of Lemma 67 (continued)

Let γ denote the configuration given by:

1
$$n^{\gamma} = n^{a} + 1.$$

$$2 \quad \forall i \in 2 \forall s \in 2^{n^a} \ (\varphi^{\gamma}(s^{\frown}i) = \varphi^{\gamma_i}(s)).$$

$$\Psi_{n^a}^{\gamma}(\emptyset) = x.$$

Let b denote the approximation given by:

Proof of Lemma 67 (continued)

Clearly γ is compatible with *b*.

Clearly b is a one-step extension of a.

It follows that a is not (S, Y)-terminal.

 \boxtimes

Lemma 68

Suppose that *a* is an odd approximation which is (S, Y)-terminal. Then there is an $(\equiv_S \cap R)$ -independent, κ^+ -Borel pair of sets $(B_0(a, S, Y), B_1(a, S, Y))$ such that $A_0(a, S, Y) \subseteq B_0(a, S, Y)$, $A_1(a, S, Y) \subseteq B_1(a, S, Y)$, $B_0(a, S, Y)$ is upward $(\equiv_S \cap R)$ -invariant, and $B_1(a, S, Y)$ is downward $(\equiv_S \cap R)$ -invariant.

Proof of Lemma 68

Lemma 67 ensures that the pair of sets $(A_0(a, S, Y), A_1(a, S, Y))$ is $(\equiv_S \cap R)$ -independent.

The desired result therefore follows from Lemma 59.

Definition

Let S' denote the κ -lexicographically reducible quasi-order generated by S and the sequence $(B_0(a, S, Y))_{a \in T_{odd}(S, Y)}$.

Lemma 69

The quasi-order R is contained in S'.

Proof of Lemma 69

The main point is that $B_0(a, S, Y)$ is upward $(\equiv_S \cap R)$ -invariant.

As $R \subseteq S$, it follows that $R \subseteq S'$.

Definition

Recursively define a sequence $(S_{\alpha}, Y_{\alpha})_{\alpha \in \kappa^+}$ by κ^{ω} by

$$(S_{\alpha}, Y_{\alpha}) = \begin{cases} (\kappa^{\omega} \times \kappa^{\omega}, \kappa^{\omega}) & \text{if } \alpha = 0, \\ (S'_{\beta}, Y'_{\beta}) & \text{if } \alpha = \beta + 1, \text{ and} \\ (\bigcap_{\beta \in \alpha} S_{\beta}, \bigcap_{\beta \in \alpha} Y_{\beta}) & \text{if } \alpha \text{ is a limit ordinal.} \end{cases}$$

Fix $\alpha \in \kappa^+$ such that $T_{\text{even}}(S_{\alpha}, Y_{\alpha}) = T_{\text{even}}(S_{\alpha+1}, Y_{\alpha+1})$ and $T_{\text{odd}}(S_{\alpha}, Y_{\alpha}) = T_{\text{odd}}(S_{\alpha+1}, Y_{\alpha+1})$.

Lemma 70

Suppose that the trivial approximation is (S_{α}, Y_{α}) -terminal. Then there is a κ^+ -Borel κ -coloring of $\equiv_S \cap G$, for some κ -lexicographically reducible quasi-order S on X with $R \subseteq S$.

Proof of Lemma 70

Note first that
$$Y_{\alpha+1} = \emptyset$$
, thus $\kappa^{\omega} = \bigcup_{\beta < \alpha} Y_{\beta} \setminus Y_{\beta+1}$.

As all $(\equiv_{S_{\alpha}} \cap G) \upharpoonright (Y_{\beta} \setminus Y_{\beta+1})$ admit κ^+ -Borel κ -colorings, so too does $\equiv_{S_{\alpha}} \cap G$.

Lemma 71

Suppose that a is an approximation which is not (S', Y')-terminal. Then there is a one-step extension which is not (S, Y)-terminal.

Proof of Lemma 71

Suppose first that *a* is even.

Fix a one-step extension b of a for which $\Gamma(b, S, Y') \neq \emptyset$.

Fix a configuration $\gamma \in \Gamma(b, S, Y')$.

Then $\varphi^{\gamma}(s_{n^b}) \in Y'$, thus b is not (S, Y)-terminal.

Proof of Lemma 71 (continued)

Suppose now that *a* is odd.

Fix a one-step extension b of a for which $\Gamma(b, S', Y) \neq \emptyset$.

Fix a configuration $\gamma \in \Gamma(b, S', Y)$.

Then $\varphi^{\gamma} \circ t_{n^b}(0) \equiv_{S'} \varphi^{\gamma} \circ t_{n^b}(1)$, thus *b* is not (S, Y)-terminal. \square

Lemma 72

Suppose that the trivial approximation is not (S_{α}, Y_{α}) -terminal. Then there is a continuous homomorphism from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to the pair (G, R).

Proof of Lemma 72

By Lemma 71, there are approximations $a_n = (n, \varphi_n, (\psi_{k,n})_{k \in n})$ that are not (S_α, Y_α) -terminal, each extended by the next.

Define
$$\varphi: 2^{\omega} \to \kappa^{\omega}$$
 and $\psi_k: 2^{\omega} \to \kappa^{\omega}$ by
 $\varphi(x) = \bigcup_{n \in \omega} \varphi_n(x \upharpoonright n)$ and $\psi_k(x) = \bigcup_{k \in n \in \omega} \psi_{k,n}(x \upharpoonright (n - (k + 1))).$

Proof of Lemma 72 (continued)

It remains to show that if $k \in \omega$ and $x \in 2^{\omega}$, then

$$(\psi_k(x),(\varphi(s_k^{-}0^{-}x),\varphi(s_k^{-}1^{-}x))) \in [\clubsuit_G]$$

if k is even, and

$$(\psi_k(x),(\varphi(t_k(0)^{\frown}0^{\frown}x),\varphi(t_k(1)^{\frown}1^{\frown}x))) \in [\aleph_R]$$

if k is odd.

We will handle the case that k is even, as the other case is identical.

Proof of Lemma 72 (continued)

It is enough to show that every open neighborhood U of the pair $(\psi_k(x), (\varphi(s_k^{-}0^{-}x), \varphi(s_k^{-}1^{-}x)))$ contains a point of $[\overset{\mathfrak{p}}{}_G]$.

Towards this end, fix $n \in \omega$ sufficiently large that $k \in n$ and

$$\mathcal{N}_{\psi_{k,n}(s)} \times (\mathcal{N}_{\varphi_n(s_k \cap 0 \cap s)} \times \mathcal{N}_{\varphi_n(s_k \cap 1 \cap s)}) \subseteq U,$$

where $s = x \upharpoonright (n - (k + 1))$.

Proof of Lemma 72 (continued)

Our choice of a_n ensures the existence of $\gamma \in \Gamma(a_n, S_\alpha, Y_\alpha)$.

Then $(\psi^{\gamma}(s), (\varphi^{\gamma}(s_k^{0} \circ s), \varphi^{\gamma}(s_k^{1} \circ s))) \in [\$_G] \cap U.$ \boxtimes

Part VIII

Applications

VIII. Applications

The characterization of thin quasi-orders

Definition

We say that a quasi-order R is κ -linearizable if it is contained in a κ -lexicographically reducible quasi-order S for which $\equiv_R = \equiv_S$.

Theorem 73 (Harrington-Marker-Shelah)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a weakly ω -universally Baire, bi- κ -Souslin quasi-order on X. Then at least one of the following holds:

- **1** The quasi-order R is κ -linearizable.
- **2** There is a continuous embedding of $\Delta(2^{\omega})$ into *R*.

Proof of Theorem 73

We will establish the special case of the theorem for good κ .

VIII. Applications The characterization of thin quasi-orders

Proof of Theorem 73 (continued)

Set $G = R^c$.

Suppose first that there is a κ^+ -Borel κ -coloring c of $\equiv_S \cap G$, for some κ -lexicographically reducible quasi-order S on X with $R \subseteq S$.

VIII. Applications

The characterization of thin quasi-orders

Lemma 74

The quasi-order R is κ -linearizable.

Proof of Lemma 74

By Lemma 60, there are $(\equiv_S \setminus R)$ -independent pairs (A_α, B_α) of κ^+ -Borel sets such that $c^{-1}(\{\alpha\}) \subseteq A_\alpha \cap B_\alpha$, A_α is downward $(\equiv_S \cap R)$ -invariant, and B_α is upward $(\equiv_S \cap R)$ -invariant.

Let T denote the κ -lexicographically reducible quasi-order generated by S and the sequence $(B_{\alpha})_{\alpha \in \kappa}$.

Then $R \subseteq T$ and $\equiv_R = \equiv_T$, thus R is κ -linearizable.

VIII. Applications The characterization of thin guasi-orders

Proof of Theorem 73 (continued)

By Theorem 62, we can therefore assume that there is a continuous homomorphism φ from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to (G, R).

Set $S = (\varphi \times \varphi)^{-1}(R)$.

Essentially by Lemma 15, the equivalence relation \equiv_S is meager.

By Lemma 58, the quasi-order S is meager.

VIII. Applications The characterization of thin quasi-orders

By Mycielski, there is a continuous embedding ψ of $\Delta(2^{\omega})$ into S.

Then $\varphi \circ \psi$ is a continuous embedding of $\Delta(2^{\omega})$ into *R*.

 \boxtimes

VIII. Applications Glimm-Effros

Theorem 75 (Harrington-Kechris-Louveau, Ditzen, Foreman-Magidor)

Suppose that κ is an aleph, X is a Hausdorff space, and E is a weakly ω -universally Baire, bi- κ -Souslin equivalence relation on X. Then at least one of the following holds:

- **1** The equivalence relation E is κ -smooth.
- **2** There is a continuous embedding of E_0 into E.

VIII. Applications Glimm-Effros

Proof of Theorem 75

We will establish the special case of the theorem for good κ .

Set $G = E^c$.

Suppose that there is a κ^+ -Borel κ -coloring c of $F \cap G$, for some κ -smooth equivalence relation F on X with $E \subseteq F$.

By Lemma 60, we can assume each $c^{-1}(\{\alpha\})$ is *E*-invariant.

Then E is the intersection of F with the smooth equivalence relation generated by c, and is therefore smooth.

By Theorem 61, we can therefore assume that there is a continuous homomorphism φ from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to (G, E).

Set
$$D = (\varphi \times \varphi)^{-1}(\Delta(X))$$
 and $F = (\varphi \times \varphi)^{-1}(E)$.

Essentially by Lemma 15, the equivalence relation F is meager.

VIII. Applications Glimm-Effros

Lemma 76

There is a continuous embedding ψ of $(\Delta(2^{\omega}), E_0)$ into (D, F).

Proof of Lemma 76

Fix a decreasing sequence of dense, open sets $U_n \subseteq D^c$ such that $F \cap \bigcap_{n \in \omega} U_n = \emptyset$.

It is enough to construct $k_n \in \omega$ and $u_{i,n} \in 2^{k_n}$ such that: (1) $\forall n \in \omega \forall s, t \in 2^n (\mathcal{N}_{\psi_{n+1}(s \cap 0)} \times \mathcal{N}_{\psi_{n+1}(t \cap 1)} \subseteq U_n).$ (2) $\forall n \in \omega \exists t \in T \forall i \in 2 (t(i) \cap i = \psi_{n+1}(0^n \cap i)).$ Here $\psi_n \colon 2^n \to 2^{\sum_{m \in n} k_m}$ is given by $\psi_n(s) = \bigoplus_{m \in n} u_{s(m),m}.$

Proof of Lemma 76 (continued)

Suppose that we have found k_m and $u_{i,m}$ for all $i \in 2$ and $m \in n$.

Fix an enumeration $(s_k, t_k)_{k \leq \ell}$ of $2^n \times 2^n$.

Recursively construct increasing sequences $(u_{i,k,n})_{k \leq \ell}$ such that

$$\forall k \leq \ell \ (\mathcal{N}_{\psi_n(s_k)^{\frown} u_{0,k,n}} \times \mathcal{N}_{\psi_n(t_k)^{\frown} u_{1,k,n}} \subseteq U_n).$$

VIII. Applications Glimm-Effros

Fix extensions $u_{i,n}$ of $u_{i,\ell,n}$ of the same length k_n for which there exists $t \in T$ such that $t(i)^{-}i = \psi_n(0^n)^{-}u_{i,n}$ for all $i \in 2$.

Clearly $\varphi \circ \psi$ is a continuous embedding of E_0 into E.

VIII. Applications The Glimm-Effros dichotomy for quasi-orders

Definition

Let R_0 denote the partial order on 2^{ω} given by

$$x <_{R_0} y \iff (xE_0y \text{ and } x \circ \delta(x,y) < y \circ \delta(x,y)),$$

where $\delta(x, y) = \max\{n \in \omega \mid x(n) \neq y(n)\}.$

Theorem 77 (Kanovei, Louveau)

Suppose that κ is an aleph, X is a Hausdorff space, and R is a weakly ω -universally Baire, bi- κ -Souslin quasi-order on X. Then at least one of the following holds:

- **1** The quasi-order R is κ -linearizable.
- **2** There is a continuous embedding of E_0 or R_0 into R.

Proof of Theorem 77

We will establish the special case of the theorem for good κ .

VIII. Applications The Glimm-Effros dichotomy for quasi-orders

Proof of Theorem 77 (continued)

Set $G = R^c$.

By Theorem 62 and Lemma 74, we can assume that there is a continuous homomorphism φ from $(G_0^{\text{even}}, H_0^{\text{odd}})$ to (G, R).

Set
$$D = (\varphi \times \varphi)^{-1}(2^{\omega})$$
 and $S = (\varphi \times \varphi)^{-1}(R)$.

Essentially by Lemma 15 and 58, the quasi-order S is meager.

VIII. Applications The Glimm-Effros dichotomy for guasi-orders

Lemma 78

There is a continuous homomorphism ψ from $(\Delta(2^{\omega})^c, R_0, E_0^c)$ to the triple (D^c, S, S^c) .

Proof of Lemma 78

Fix a decreasing sequence of dense, open sets $U_n \subseteq D^c$ such that $S \cap \bigcap_{n \in \omega} U_n = \emptyset$.

It is enough to construct $k_n \in \omega$ and $u_{i,n} \in 2^{k_n}$ such that: (1) $\forall n \in \omega \forall s, t \in 2^n (\mathcal{N}_{\psi_{n+1}(s \cap 0)} \times \mathcal{N}_{\psi_{n+1}(t \cap 1)} \subseteq U_n).$ (2) $\forall n \in \omega \exists t \in T \forall i \in 2 (t(i) \cap i = \psi_{n+1}(i^{n} \cap (1-i))).$ Here $\psi_n \colon 2^n \to 2^{\sum_{m \in n} k_m}$ is given by $\psi_n(s) = \bigoplus_{m \in n} u_{s(m),m}.$

Proof of Lemma 78 (continued)

Suppose that we have found k_m and $u_{i,m}$ for all $i \in 2$ and $m \in n$.

Fix an enumeration $(s_k, t_k)_{k \leq \ell}$ of $2^n \times 2^n$.

Recursively construct increasing sequences $(u_{i,k,n})_{k \leq \ell}$ such that

$$\forall k \leq \ell \ (\mathcal{N}_{\psi_n(s_k)^{\frown} u_{0,k,n}} \times \mathcal{N}_{\psi_n(t_k)^{\frown} u_{1,k,n}} \subseteq U_n).$$

Fix extensions $u_{i,n}$ of $u_{i,\ell,n}$ of the same length k_n for which there exists $t \in T$ such that $t(i)^{-}i = \psi_n(i^n)^{-}u_{1-i,n}$ for all $i \in 2$.

Then the function $\pi = \varphi \circ \psi$ is a continuous, injective homomorphism from (R_0, E_0^c) to (R, R^c) .

Proof of Theorem 77 (continued)

Suppose now there are comeagerly many $x\in 2^\omega$ such that

$$\forall y \in [x]_{E_0} \ (\pi(x) \equiv_R \pi(y)).$$

As E_0 continuously embeds into its restriction to any comeager set, such a function can be composed with π to obtain a continuous embedding of E_0 into R.

VIII. Applications The Glimm-Effros dichotomy for guasi-orders

Proof of Theorem 77 (continued)

Suppose now that there are comeagerly many $x \in 2^{\omega}$ such that

 $\exists y \in [x]_{E_0} \ (\pi(x) \not\equiv_R \pi(y)).$

Let σ denote the successor function for R_0 .

As every Borel partial transversal of E_0 is meager, it follows that the set $C = \{x \in 2^{\omega} \mid \varphi(x) <_R \varphi \circ \sigma(x)\}$ is non-meager.

As R_0 continuously embeds into its restriction to any non-meager Borel set, such a function can be composed with π to obtain a continuous embedding of R_0 into R.