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Reverse mathematics is a program in mathematical
logic that seeks to determine which axioms are required
to prove theorems of mathematics. The method can
briefly be described as “going backwards from the
theorems to the axioms”. This contrasts with the ordinary
mathematical practice of deriving theorems from axioms.

Wikipedia

Work over a weak base system. Various standard axioms
provide strengthening. Given a theorem Φ, find, ideally, a
standard axiom A so that, over the base system:

1. A is enough to prove Φ.

2. A is necessary to prove Φ.

Primary reference, Simpson [1999].
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Reverse mathematics, continued

Some theorems addressed by reverse mathematics:
I Heine-Borel theorem on [0,1].
I Sequential completeness of R.
I Bolzano–Weierstrass theorem.
I The perfect set theorem.
I Open determinacy.
I Cantor-Bendixson theorem.
I . . . .

Natural base system RCA0: axioms of PA for the natural
numbers with only Σ0

1 induction, and ∆0
1 comprehension.

Additional axioms provide sets of natural numbers,
beyond the recursive sets one gets from the base system.

Reverse mathematics measures how much of this extra
strength is needed for each theorem.
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Subsystems of analysis
Standard markers of strength include the following set
existence axioms, increasing over the base system RCA0,
consisting of PA−, Σ0

1 induction, and ∆0
1 comprehension.

1. ∆0
1 comprehension: for Σ0

1 formulas ϕ, ψ, if
ϕ(n)↔ ¬ψ(n), then {n | ϕ(n)} exists.

2. Weak König lemma: each infinite subtree of the
binary tree has a branch.

3. Arithmetic comprehension.
4. Weak Σ1

1 choice: if (∀n)(∃!x)ϕ(n, x), then there is
〈yn | n < ω〉 so that (∀n)ϕ(n, yn). Arithmetic ϕ

5. ∆1
1 comprehension.

6. Σ1
1 choice: as 4, but without assuming uniqueness.

7. Arithmetic transfinite recursion: arithmetic
comprehension can be iterated transfinitely.

8. Π1
1 comprehension.

9. Π1
2 comprehension.
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Subsystems of analysis, continued

1. ∆0
1 comprehension.

2. Weak König lemma.

3. Arithmetic comprehension.

4. Weak Σ1
1 choice. (With uniqueness.)

5. ∆1
1 comprehension.

6. Σ1
1 choice.

7. Arithmetic transfinite recursion.

8. Π1
1 comprehension.

9. Π1
2 comprehension.

Added to RCA0, forming subsystems of analysis.

1, 2, 3, 7, 8 give big five systems of reverse mathematics.

4, 5, 6 give systems of hyperarithmetic analysis:

T is a theory of hyperarithmetic analysis if (a) its ω
models are closed under joins and hyperarithmetic
reducibility; (b) it holds in HYP(x) for all x .
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Connection with Set Theory

Several results in reverse mathematics at the level of
hyperarithmetic theories use set theory, particularly Steel
[1977] forcing.

Theorem (Steel [1977])
∆1

1 comprehension does not imply Σ1
1 choice.

Theorem (Van Wesep [1977])
Weak Σ1

1 choice does not imply ∆1
1 comprehension.

More recently additional axioms introduced by Montalbán.

Theorem (Montalbán [2008], [2006])
Π1

1 separation is strictly between ∆1
1 comprehension and

Σ1
1 choice. Other principles on “game comprehension”

strictly below weak Σ1
1 choice.
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Steel forcing

Let M = Lωck
1

. Force over M.

Fix a linear order ≺ in M whose wellfounded part is
isomorphic to ωck

1 .

Conditions are 〈T , f ,h〉 where:
1. T ⊆ ω<ω is a finite tree. For x , y ∈ T Write x < y to

mean x is an initial segment of y .
2. f is a finite partial function from ω into T . Let Twf

consist of nodes of T which are not in the downward
closure of image(f ).

3. h is a tagging function from Twf into ≺, meaning that
if y > x then h(y) ≺ h(x).

Ordered in the natural way: 〈T ∗, f ∗,h∗〉 < 〈T , f ,h〉 if:
T ∗ ⊇ T , dom(f ∗) ⊇ dom(f ) and f ∗(n) ≥ f (n) for each
n ∈ dom(f ), h∗ extends h.
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Steel forcing, continued

Generic filter G gives rise to:
1. A tree T = TG ⊆ ω<ω.
2. A set of infinite branches bi = fG(i) (i < ω) through T .
3. A rank function hG from Twf into ≺.

Work with models M[T ,B] where B is a finite subset of
{bi | i < ω}. Key lemmas:

Lemma
The only infinite branches through T in M[T ,B] are the
ones in B.

Lemma
For B1,B2 disjoint, M[T ,B1 ∪ B2] can in some sense be
viewed as a forcing extension of M[T ,B1].
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Countable linear orders

Definition

I A linear order (U;<U) is scattered if it does not
embed Q.

I A gap in U is a partition of U into sets L and R,
closed leftward and rightward respectively.

I A gap 〈L,R〉 is a decomposition of U if U does not
embed into L, and does not embed into R.

I U is indecomposable if, for every gap 〈L,R〉, U
embeds into either L or R.
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INDEC

Recall, U is indecomposable if, for every gap 〈L,R〉, U
embeds into either L or R.

Definition
U is indecomposable to the left if whenever 〈L,R〉 is a
gap with L 6= ∅, U embeds into L. Indecomposability to
the right defined similarly.

Theorem (Jullien [1969])
Suppose U is scattered and indecomposable. Then U is
indecomposable to the left, or indecomposable to the
right.

Theorem termed INDEC by Montalbán.
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Hyperarithmetic analysis

Montalbán [2006] was led to INDEC working on strength
of Fraïssé’s conjecture = Laver [1971] theorem.

Investigating INDEC, Montalbán:

1. Observed that the proof of INDEC uses only RCA0 +
∆1

1 comprehension. It follows that INDEC holds in
HYP(X ) for all X .

2. Proved that every ω model of INDEC is closed under
the αth Turing jump, for each ordinal α in the model.
It follows that ω models of INDEC are closed under
hyperarithmetic reducibility.

INDEC is thus a theorem of hyperarithmetic analysis.
It is the first natural example of such a theorem.
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Exact strength

1. ∆0
1 comprehension.

2. Weak König lemma.

3. Arithmetic comprehension.

4. Weak Σ1
1 choice. (With uniqueness.)

5. ∆1
1 comprehension.

6. Σ1
1 choice.

7. Arithmetic transfinite recursion.

8. Π1
1 comprehension.

9. Π1
2 comprehension.

The precise strength of INDEC remained open.

Does it imply ∆1
1 comprehension? can it be proved from

any weaker axiom?

Ideally in reverse mathematics, its strength should fit
exactly with one of the logical axioms.

But it does not.
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Exact strength, continued
1. ∆0

1 comprehension.
2. Weak König lemma.
3. Arithmetic comprehension.
4. Weak Σ1

1 choice. (With uniqueness.)
5. ∆1

1 comprehension.
6. Σ1

1 choice.
7. Arithmetic transfinite recursion.
8. Π1

1 comprehension.
9. Π1

2 comprehension.

Theorem (Neeman [2008])
(In RCA0 + Σ1

1 induction.) INDEC implies weak Σ1
1 choice.

Theorem (Neeman [2008])
Weak Σ1

1 choice does not imply INDEC.

Theorem (Neeman [2008])
INDEC does not imply ∆1

1 comprehension.

Non-implications are set theoretic consistency results,
and use Steel forcing.
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Implication

Theorem
(In RCA0 + Σ1

1 induction.) INDEC implies weak Σ1
1 choice.

Proof sketch.
Suppose (∀n)(∃!x)ϕ(n, x), arithmetic ϕ.

Construct, in RCA0 + Σ1
1 induction, a linear order (U;<U)

so that:

1. U is scattered.
2. L∗ = {a | U embeds into Ra} and R∗ = {a | U

embeds into La} form a non-trivial gap in U.
3. This gap codes a sequence 〈yn | n < ω〉 so that

(∀n)ϕ(n, yn).

By INDEC, 〈L∗,R∗〉 exists, hence 〈yn | n < ω〉 exists.

In proof of 2, need to know that for all m < ω, 〈yn | n < m〉
exists. This is where Σ1

1 induction is used.
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Induction
Proved the following reversal, in the base system RCA0 +
Σ1

1 induction: INDEC implies weak Σ1
1 choice.

Standard base system, RCA0, has only Σ0
1 induction.

There are uses of stronger induction in reverse
mathematics. For example ∆1

3 comprehension plus Σ1
1

induction proves ∆0
3 determinacy, and induction cannot

be dropped.

Relatively rare, but there are a few other examples of
similar nature. Induction is part of the strength.

Result on strength of INDEC is a reversal: shows
Theorem X implies Axiom Y where neither X nor Y
implies strong induction.

Reversals that use strong induction can generally be
refined to use only Σ0

1 induction.

This is not the case with INDEC.
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Induction, continued

Theorem (Neeman [201?])
In RCA0 + ∆1

1 induction, INDEC does not imply weak Σ1
1

choice.

First example of a provably necessary use of more than
Σ0

1 induction in a reversal.

Proof involves a combination of Steel forcing with a
construction of a non-standard model.

Let T = TG, f = gG and h = hG be given by a generic for
Steel forcing.

For each n let in be least so that f (in)(0) = 〈n, ∗〉. Let
U = {bin | n < ω}.

Let A be a transitive model of set theory containing
M,T , f ,g. Fix A∗ a non-standard elementary extension.

Model for theorem is
⋃

B⊆U∗, of standard finite size M∗[T ∗,B].
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Questions

There are potentially other results on necessary use of
induction.

A linear order U is extendible if every partial order P
which does not embed U has a linearization which does
not embed U.

For example ω∗ is extendible, and its extendibility is just
the statement that every wellfounded order has a
wellfounded linearization.

2 is not extendible. If R is indecomposable to the right,
and L to the left, then R + L is not extendible.

JUL is the statement that U fails to be extendible iff it has
an essential segment of the form 2 or R + L (for R and L
as above).
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Questions, continued

Theorem (Montalbán [2006])
(In RCA0 + Σ1

1 induction.) JUL is equivalent to Fraïssé’s
conjecture.

Right-to-left direction uses Σ1
1 induction.

Not known if use is necessary.

Theorem (Montalbán–Miller)
(In RCA0 + Σ1

1 choice + Σ1
1 induction.) Extendibility of the

rationals is equivalent to ATR.

Both directions use Σ1
1 induction.

Not known if use is necessary.
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